
Chapter 31

ING Rhythms

Gamma rhythms can also be generated by the interaction of I-cells alone, without
any involvement of E-cells. For example, in brain slices, gamma rhythms can be
evoked even in the presence of drugs blocking AMPA and NMDA receptors. See
Fig. 31.1 for an example, recorded from rat CA1.

Assuming strong external drive to the I-cells, the mechanism seems, at first
sight, similar to PING: Activity of the I-cells creates inhibition, which silences
the entire population temporarily, and when firing resumes, it is in greater syn-
chrony, as described in Chapter 29.25 Gamma rhythms created in this way were
called Interneuronal Network Gamma (ING) rhythms in [183]; earlier studies of
such rhythms include [174] and [182].

To construct model networks of inhibitory cells, we simply omit the E-cells
from the networks of Chapter 30 and strengthen the external drive to the I-cells.
The resulting networks are capable of generating gamma rhythms, but only un-
der idealized circumstances, namely with little heterogeneity in external drives (σI

small) and very little randomness in synaptic connectivity (pII very close to 1); see
Sections 31.1 and 31.2 for examples.

The fast-firing interneurons involved in generating gamma rhythms are well
known to be connected by gap junctions [57]. When gap-junctional coupling is
added to the model networks, ING rhythms become much more robust; this is
demonstrated with examples in Section 31.3. It is in line with many experimen-
tal and modeling studies that have found gap junctions to drive neurons towards

Electronic supplementary material: The online version of this chapter (doi: 10.1007/
978-3-319-51171-9 31) contains supplementary material, which is available to authorized users.

25This requires that inhibitory input in fact delays and synchronizes I-cell firing. For example,
an h-current in the I-cells may undermine the mechanism, just as an h-current in the E-cells can
undermine PING. However, in this chapter, we will take the I-cells to be WB neurons, for which
there are no such complications.
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synchrony (see, for instance, [93, 153, 160]), and is expected because of the equili-
brating effect of discrete diffusion (see Chapter 21).26

Even in the absence of any heterogeneity, ING networks without gap junctions
can generate clustering, with individual cells firing only on a fraction (most typically

Figure 31.1. Figure 3 of [183], reproduced with publisher’s permission.
These are in vitro recordings from rat CA1. AMPA and NMDA receptors were
blocked by drugs, and the inhibitory interneurons were excited using a technique
called pressure ejection of glutamate. The figure shows a local field potential (top
trace), and membrane potentials of a pyramidal cell and an inhibitory interneuron
(middle and bottom traces). The three traces were not recorded concurrently. The
horizontal scale bar indicates 100 ms. The vertical scale bars indicate 1 mV (top
trace), 4mV (middle trace), and 20mV (bottom trace).

one half) of the population spike volleys. This was shown in [174] (and also, for
purely inhibition-based rhythms at lower frequencies, earlier in [62]). We show
examples in Section 31.4.

In summary, synchrony in networks of inhibitory cells without gap-junctional
coupling seems fairly fragile. In Section 31.5, we illustrate this point in yet another
way, using the example of a pair of abstract oscillators coupled by inhibitory pulses.

26It is not, however, obvious that the equilibrating effect of discrete diffusion carries over to the
case of spiking neurons, and in fact it is not always true; see [28, Fig. 8].
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31.1 Single-Cell ING
To build intuition, we begin with a single WB neuron with an inhibitory autapse.
A voltage trace resulting from a simulation of such a single-cell “network” model is
shown in Fig. 31.2; the parameter values are specified in the caption of the figure.
Not surprisingly, the voltage trace does not look much different from that of a WB
neuron without the autapse.
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Figure 31.2. Voltage trace of a WB neuron with an inhibitory autapse.
The external drive is I = 1.5. The parameters characterizing the autapse are gsyn =
0.5, τr = τpeak = 0.5, τd = 9, and vrev = −75. [1_CELL_ING]

We denote the period at which the cell in Fig. 31.2 fires by P , and explore the
parameter dependence of P . In analogy with Table 30.1, we compute the percentage
change in P resulting from a 1% reduction in I, a 1% increase in gsyn, and a 1%
increase in τd. Again we find that the period depends more sensitively on external
drive than on the strength or decay time constant of the autapse.

I → 0.99I gsyn → 1.01gsyn τd → 1.01τd

increase in P : 0.77 0.35 0.47

Table 31.1. Parameter dependence of the period P of the rhythm of
Fig. 31.2. [1_CELL_ING_CONDITION_NUMBERS]

31.2 Basic Network Simulations

Figure 31.3 shows an ING rhythm generated by 100 WB neurons coupled with
inhibitory synapses. Note that it takes longer to reach synchrony than in, for
instance, the PING network of Fig. 30.4. In Fig. 31.3, conditions for synchronization
are ideal: There is no heterogeneity in external drives, synaptic connectivity is all-
to-all, and all synapses have the same strength. This is why perfect synchrony
is reached in the limit as t → ∞. With a modest level of drive heterogeneity
(σI = 0.03), it takes even longer to reach (approximate) synchrony; see Fig. 31.4. A
similar effect is seen when 15% of the synaptic connections in Fig. 31.3 are omitted
at random (pII = 0.85), and the remaining ones strengthened by the factor 100/85;
see Fig. 31.5. As in Chapter 30, this is not primarily an effect of sparseness and
randomness per se, but of variations in the total amount of synaptic input per cell;
see Fig. 31.6. With greater heterogeneity, the rhythm disappears; see Fig. 31.7, and
also exercise 3. For an analysis of the sensitivity of ING rhythms to heterogeneity,
see [178].
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Figure 31.3. Spike rastergram of 100 synaptically coupled WB neurons.
Spike times of I-cells (which are the only cells in the network) are indicated in
blue. The parameters, using the notation of Chapter 30, are NI = 100, II =
1.5, ĝII = 0.5, pII = 1, τr,I = 0.5, τpeak,I = 0.5, τd,I = 9, vrev,I = −75. There
is no heterogeneity of any kind in the network. Initialization is, as in Chapter 30,
asynchronous, in the sense explained in Section 24.1. [ING_1]
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Figure 31.4. Same as Fig. 31.3, but with heterogeneous external drive
(different neurons receive different, temporally constant drives): σI = 0.03. [ING_2]
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Figure 31.5. Same as Fig. 31.3, but with 15% of synaptic connections
omitted at random (pII = 0.85), and the remaining ones strengthened by the factor
100/85. [ING_3]

Several studies have suggested, based on both experiments and simulations,
that parameter choices such as those in Figs. 31.3–31.7 might be far from realistic,
and that the inhibitory synapses should be briefer, stronger, and shunting rather
than hyperpolarizing; see in particular [7] and [169]. We will not discuss this point
further here, and leave it to the reader to investigate ING rhythms with briefer,
stronger, shunting inhibition; see exercise 12.
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Figure 31.6. Same as Fig. 31.5, but now each cell receives inputs from
exactly 85 cells, instead of receiving input from a random number of cells with
mean 85. [ING_4]
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Figure 31.7. As in Fig. 31.3, but with σI = 0.05 and pII = 0.5 [ING_5]

31.3 Adding Gap Junctions

We model gap junctions as described in Chapter 21. In our code, the strength of
the connection between neurons i and j is taken to be

ggap,ij =

{
ĝgap/ (pgap(NI − 1)) with probability pgap,

0 with probability 1− pgap,

for i > j, ggap,ij = ggap,ji for i < j, and ggap,ii = 0. The parameter pgap deter-
mines the density of gap-junctional connections, and ĝgap determines their strength.
We scale by pgap(NI − 1) to make the expected value of the total gap-junctional
conductance affecting a cell independent of pgap and NI ; compare the discussion
in Section 30.2. (Note that a cell can receive gap-junctional input only from other
cells, not from itself. This is why we scale by pgap(NI − 1) here, not by pgapNI .) In
the simulations presented here, we use NI = 100 and pgap = 0.05, so the expected
number of gap-junctional contacts per cell is 99× 0.05 = 4.95 ≈ 5, and ĝgap = 0.1,
so the strength of each gap-junctional connection is ggap,ij ≈ 0.02. With this gap-
junctional coupling added, (approximate) synchrony is reached extremely rapidly,
within two gamma cycles, in the simulations of Figs. 31.4 and 31.5 (exercise 2),
and even a much greater degree of heterogeneity does not destroy the rhythm; see
Fig. 31.8.

31.4 Clustering
Even in purely inhibitory networks without any heterogeneity, synchronization is
somewhat fragile in the absence of gap junctions. There are parameter choices for
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Figure 31.8. As in Fig. 31.7, but with ĝgap = 0.1 and pgap = 0.05. [ING_6]

which one sees a breakup of the cells into n > 1 clusters (usually n = 2, but see
exercise 7), with each cluster firing on every n-th population cycle. However, the
clustering behavior is fragile as well: A moderate amount of drive heterogeneity
destroys it, and gap-junctional coupling does not restore it, but instead results in
complete synchronization, even for parameters for which there is clustering in the
absence of heterogeneity. For these reasons, it seems unclear whether clustering in
ING networks could have biological relevance. Nonetheless we will briefly discuss it
here, as another illustration of the fragility of ING rhythms in the absence of gap
junctions.

Wang and Buzsáki [174] demonstrated numerically that in networks without
heterogeneity, clustering is seen when the hyperpolarization following firing is pro-
nounced [174, Fig. 3], especially when the synaptic reversal potential is relatively
high. The hyperpolarization following firing can be made pronounced by slowing
down the variables h and n, which play central roles in ending the action potential;
see [174], and also Exercise 5.6. If we multiply the functions αh, βh, αn, and βn by
1/2 (this amounts to doubling τh and τn, or to reducing the scaling factor φ of [174]
from 5 to 2.5), Fig. 31.3 turns into 31.9. The red rectangle in Fig. 31.9 is shown
once more, enlarged, in Fig. 31.10. There are two clusters firing alternatingly.27
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Figure 31.9. As in Fig. 31.3, but with αh, βh, αn, and βn reduced by a
factor of 2. The red rectangle indicates the window that is enlarged in Fig. 31.9.
[ING_7]

Heuristically, one can see why strong spike afterhyperpolarization and a rela-
tively high synaptic reversal potential might counteract synchronization: Inhibition
soon after firing is then depolarizing, since the membrane potential after firing will

27If you conclude, after looking at Fig. 31.10, that something must be wrong with my code,
download and examine the code, or do exercise 5, or both.
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Figure 31.10. Red window in Fig. 31.9, enlarged. [ING_8]
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Figure 31.11. Like Fig. 31.10, but with σI = 0.05. [ING_9]
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Figure 31.12. Like Fig. 31.11, but with weak, sparse gap junctions: ĝgap =
0.04, pgap = 0.05. [ING_10]

be below the synaptic reversal potential, whereas inhibition arriving soon before
firing will of course be hyperpolarizing. Consequently, the cells that fire first in an
approximately (but not perfectly) synchronous spike volley accelerate each other
by their inhibitory interactions, while slowing down the cells that are behind and
receive the inhibition before firing.

When we introduce heterogeneity in drive (σI = 0.05) in the simulation of
Fig. 31.9, the firing becomes asynchronous; see Fig. 31.11. When we add gap junc-
tions, even quite weak and sparse ones, clustering does not return, but instead the
entire population synchronizes; see Fig. 31.12.

You might wonder whether in a PING rhythm, clustering of the E-cells
couldn’t happen for the precisely same reason for which it happens in ING. In fact
it can; see Chapter 32. For PING rhythms, clustering occurs easily when the E-cells
express28 adaptation currents. It is possible even without adaptation currents, but
requires very rapid, and probably unrealistically rapid, inhibitory feedback; see
Section 32.3.

28The word “express,” used in this way, is useful neuroscience jargon. A cell in which a certain
current is present is briefly said to “express” that current.
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31.5 Two Abstract Oscillators Coupled by Inhibitory
Pulses

Figure 25.10 shows a PRC of a WB neuron responding to a brief inhibitory pulse.
We now consider a pair of abstract oscillators of the sort analyzed in Chapter 26,
with a phase response function qualitatively resembling the function shown in
Fig. 25.10. We define the phase response function by

g(ϕ) = −H
(
ϕ− 0.1

0.1

) (
H
(
0.8− ϕ

0.05

)
−H(−4)

)
ϕ

2
(31.1)

with

H(s) =
1 + tanh(s)

2
. (31.2)

See exercise 8 for the motivation for this definition. Figure 31.13 shows the graph
of g, and the graph of the function G derived from it as described in Section 26.
Note that there is qualitative similarity between the graph of g and Fig. 25.10, but
there is also a significant difference: In Fig. 25.10, g(0) < 0 (even an inhibitory pulse
that arrives right at the moment at which the membrane potential crosses −20mV
from above will retard the next spike), whereas in the framework of Chapter 26,
g(0) = g(1) = 0. The graph of G shows that synchrony is weakly attracting (in
fact, G′(0) ≈ 0.9467, see exercise 9), but anti-synchrony is attracting as well. This
is reminiscent of the network of Figs. 31.9 and 31.10, where clustering is a stable
state, but so is synchrony (see exercise 6b). For further discussion of this example,
see exercise 10.
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Figure 31.13. The function g defined by eqs. (31.1) and (31.2), and the
function G derived from it as described in Section 26. Fixed points of G correspond
to possible phase-locked states of the two oscillators. Synchrony (solid green points)
and anti-synchrony (solid blue point) are stable. There is another possible, but
unstable phase-locked state (red circles). [ABSTRACT_PULSE_COUPLING_INH]

Note that the value of ϕ corresponding to anti-synchrony in Fig. 31.13 is clearly
not 1/2, contrary to what you might have expected. This is explained in the para-
graph following the proof of Proposition 26.1.
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31.6 Entrainment of Excitatory Cells by ING
Rhythms

What happens when an ING network gives input to a population of other neurons,
say a population of pyramidal cells? Is the rhythmicity projected into the target
population? We can experiment by adding, for instance, to the network of Fig. 31.8,
a population of E-cells, with ĝIE > 0 but ĝEI = 0, so that the E-cells are affected
by, but do not affect the I-cells. If the E-cells receive too little external drive, then
of course they will simply be suppressed by the inhibitory input. But given external
drive sufficient to make them fire, will they fire rhythmically, phase-locked with the
I-cells?
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Figure 31.14. The ING network of Fig. 31.8 entraining a population of
NE = 400 E-cells. Here ĝEE = ĝEI = 0, but ĝIE = 0.5, pEI = 0.5, IE = 1.5, and
σE = 0.1. [ING_ENTRAINING_E_CELLS]
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Figure 31.15. Same network as in Fig. 31.14, with all heterogeneity in
drives and randomness in connectivity removed (σE = σI = 0, pII = pIE = 1).
As IE crosses a threshold, phase-locking of the E-cell population with the I-cell
population is lost. [ING_ENTRAINING_E_CELLS_2]
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Figure 31.14 shows a case in which the answer to the above question is “yes.”
Note that the firing looks very similar to that in a PING network, in spite of the
fact that there is no E-to-I coupling. There is a broad range of drives to the E-cells
for which similar patterns are obtained. As the drive to the E-cells gets stronger,
the phase relation between E- and I-cells changes, with the E-cells firing earlier in
the cycle of the I-cells; see upper panel of Fig. 31.15.

Then, as a threshold value is crossed, there is an abrupt transition from phase-
locking of the E-cells with the I-cell to a “phase walkthrough” pattern, shown in the
middle panel of Fig. 31.15. The E-cells fire earlier and earlier in the I-cell cycle, until
they fire twice in one cycle, then return to firing later in the cycle, and the gradual
shift to earlier phases resumes. For yet stronger drive, there is greater irregularity;
see bottom panel of Fig. 31.15. To separate the effect of a strong drive to the E-
cells from the effects of heterogeneity in drives and randomness in connectivity,
drive heterogeneity and randomness of connectivity were omitted in Fig. 31.15.

Exercises
31.1. (∗) Compute tables similar to Table 31.1 for other parameter values. Also

investigate how sensitively P depends on other parameters, for instance, on
gL.

31.2. (∗) Add gap junctions with ĝgap = 0.1 and pgap = 0.05 to the codes gen-
erating Figs. 31.4 and 31.5, and see what you get. (Hint: This is already
programmed in the codes generating Figs. 31.4 and 31.5, all you need to do
is make ĝgap non-zero!)

31.3. (∗) In the code that generates Fig. 31.7, change the initialization so that each
neuron is initialized at a random phase uniformly distributed not in [0, 1],
but in [0, 0.02]. Thus the population is nearly synchronous at the beginning.
How does the rastergram change? Does (approximate) synchrony appear to
be stable?

31.4. (∗) To which extent does the rhythm in Fig. 31.8 depend on the chemical
synapses? Would the neurons similarly synchronize, because of the gap
junctions, even if ĝII were zero?

31.5. (∗) When you look at Figs. 31.9 and 31.10, do you think something must
be wrong? I did, when I first saw these figures. There are strangely long
sequences of neurons with consecutive indices that belong to the same clus-
ter. It looks as though neurons with nearby indices were correlated. But
membership in clusters should really be random here, shouldn’t it? There
should be no correlation between the cluster that neuron i belongs to, and
the cluster that neuron i+ 1 belongs to.

To reassure yourself that nothing is alarming about Fig. 31.9, define

f(i) =

{
1 with probability 1/2,
2 with probability 1/2,

i = 1, 2, . . . , 20,
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and plot f(i) as a function of i. Compute several realizations of f , of course
using different random number generator seeds each time. (All you need to
do in Matlab to get different realizations of f is not reset the seed before
computing a new realization.) Do you see plateaus that seem surprisingly
long, suggesting a correlation between f(i) and f(i+ 1)?

The phenomenon that you see here is well-known in sports: Fairly long
“winning streaks” and “losing streaks” are more likely to emerge by pure
chance than most of us would expect [59].

31.6. (∗) (a) Does the clustering shown in Fig. 31.10 persist for a much longer
time? Run the simulation for 2000ms, and see whether you still observe the
same clusters as in Fig. 31.10 in the last 100ms of simulated time. (b) Repeat
the simulation of Fig. 31.10 with initial conditions close to synchrony. (For
instance, start all neurons at phases selected with uniform distribution from
the interval [0, 0.1].) Do you get clustering, as in Fig. 31.10?

31.7. (∗) In the code that generates Fig. 31.10, use the parameters τr,I = 0.2,
τpeak,I = 0.2, τd,I = 1. (These values are admittedly implausible biologi-
cally.) Show that you get three clusters.

31.8. (a) Plot the function H defined in eq. (31.2). (b) Explain what motivates
the definition (31.1).

31.9. (∗) Use the code that generates Fig. 31.13 to verify that G′(0) ≈ 0.9467.
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Figure 31.16. A simplification of the function g in Fig. 31.13.
[ABSTRACT_PULSE_COUPLING_INH_2]

31.10. (†) Figure 31.16 shows a phase response function qualitatively similar to that
in Fig. 31.13, but with simpler behavior near ϕ = 0 and 1. The behavior of g
near 0 and 1 determines the stability of synchrony; see (26.10). The stability
of non-synchronous phase-locked states, on the other hand, is determined
by the behavior away from the edges. So by analyzing non-synchronous
phase-locked states for the PRC shown in 31.16, we can understand non-
synchronous phase-locked states for the PRC in Fig. 31.13.

Assume that g(ϕ) = εg0(ϕ), where ε ∈ (0, 1], and g0 = g0(ϕ), ϕ ∈ [0, 1], is
a continuously differentiable function with g0(0) = g0(1) = 0, g0(ϕ) < 0 for
ϕ ∈ (0, 1), and |g′(0)| < g′(1).
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(a) Show that synchrony is unstable for sufficiently small ε ∈ (0, 1].
(b) Assume that the function G, derived from g as in Chapter 26, has finitely
many fixed points only. Show that there is a stable non-synchronous phase-
locked state.

31.11. (∗) Test what happens when one makes IE much smaller in the simulations
of Fig. 31.15. Find various possible entrainment patterns by varying IE .

31.12. (∗) Investigate ING rhythms with briefer, stronger, shunting inhibition, and
compare their properties with those of the ING rhythms studied in this
chapter, using variations on the codes generating the figures in this chapter.




