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 25   Introduction to the Various Connectivity Analyses 

How brain networks develop, function, and support cognition is a large and growing topic in 

many branches of neuroscience (Sporns 2011). Neural networks operate at multiple spatial 

and temporal scales (Varela et al. 2001), and considerable empirical research from multiple 

species, theories, and mathematical models over the past several decades points to oscillatory 

synchronization as being a key mechanism by which neural populations transmit informa-

tion and form larger networks (Fries 2005; Salinas and Sejnowski 2001; Singer 1993). The 

purpose of this chapter is to provide an overview of the methods most commonly used to 

assess connectivity in cognitive electrophysiology and the issues involved in those analyses. 

 The term  “ connectivity ”  is used here to refer to any analysis for which more than one 

signal is considered at a time. This mostly refers to two signals from two different electrodes 

but can also refer to two signals from the same electrode or multiple signals from multiple 

electrodes. The term connectivity includes measures based on phase and on power using a 

variety of linear and nonlinear methods. These analyses often have disparate assumptions 

and utilize different aspects of the EEG signal but share the common goal of identifying brain 

connectivity; thus, the term connectivity is used to refer generally to all analyses that share 

this goal. 

 25.1   Why Only Two Sites (Bivariate Connectivity)? 

Most but not all brain connectivity measures are bivariate, meaning that they involve inter-

actions between only two brain regions/electrodes. Some brain connectivity measures may 

initially seem multivariate (one-to-all or all-to-all connectivity) but are in fact mass-bivariate 

measures because each step of the analysis involves connectivity between only a pair of 

electrodes. 

 Why are most connectivity measures bivariate? Perhaps this is related to our still-infantile 

view of brain interactions in which there are few detailed models of multinode networks 



320 Chapter 25

that are widely used in cognitive electrophysiology. This is possibly due to a paucity of 

approachable and intuitive mathematical/statistical analyses for quantifying larger and more 

complex networks. From a practical perspective, increasingly complex models of multinode 

brain interactions become increasingly difficult to conceptualize, and thus, it is easier to 

break them down into a set of simpler bivariate cases. For this reason, bivariate connectivity 

analyses are easier to implement, interpret, and test with established statistical procedures. 

Another possible reason for the abundance of bivariate connectivity methods is that the 

brain really works that way, and bivariate connections are the most relevant types of connec-

tions for many cognitive functions. 

 The focus in this book on bivariate connectivity methods is due to the practical reason 

listed above: bivariate methods are easier to understand, implement, visualize, and sta-

tistically quantify. This is in no way a rebuke of multivariate connectivity methods or an 

endorsement of the idea that only bivariate connections are relevant to brain function. The 

chapter on graph theory (chapter 31) provides an introduction to some multivariate network 

analyses. 

 You should be aware that bivariate correlations can inflate or misrepresent estimates of 

relationships if the network structure is actually multivariate (an example of this is shown 

in   figure 25.1A ). This is particularly relevant for brain connectivity because the brain is a 

highly multivariate system. For task-related connectivity this potential inflation is mitigated 

somewhat by condition comparisons because inflated connectivity estimates should affect 

all conditions, and therefore, the inflation should subtract out during condition compari-

sons of connectivity. 

 25.2   Important Concepts Related to Bivariate Connectivity 

 The following five points should be kept in mind when you are interpreting results of bivari-

ate connectivity analyses. 

 First, for many (though not all) types of connectivity analyses, the phase lag between the 

two electrodes is not taken into consideration. What matters is that the phase lag is consis-

tent across time and/or trials. This means that connectivity between a pair of electrodes that 

are 0 ms, 10 ms, or 100 ms lagged from each other can be equally strongly synchronized. 

Most measures of connectivity provide information regarding the phase lag, although this 

can be difficult to interpret in some cases (see next paragraph and   figure 25.1 ). 

 Second, a nonzero phase lag in connectivity does not necessarily imply a causal or directed 

relationship. Nonzero connectivity lag can be considered supporting evidence consistent 

with a causal or directed relationship, but this should be interpreted cautiously. For example, 
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if region A and region B each are entrained with region C, and if the C  →  A connection is 

faster than the C  →  B connection, there may appear to be phase-lagged connectivity between 

A and B without a causal or even a direct interaction between them (  figure 25.1A ). This 

example also highlights a danger of interpreting a bivariate correlation in a multivariate 

network. Another example: given a phase lag of 10 ms between regions A and B that are 

synchronous at 15 Hz, it may be difficult to determine whether A leads B by 10 ms, 

or whether B leads A by 56 ms (  figure 25.1B ). An additional complication of interpreting 

phase lags between electrodes is that phase (and thus, the phase lag between two elec-

trodes) may be influenced by the relative dipole orientations of the sources measured by the 

electrodes.     

 Some measures such as Granger prediction (chapter 28) and the phase-slope-index 

(chapter 26) provide better evidence for directed connectivity compared to connectivity 

measures based on phase angle distributions (chapter 26) or power correlations (chapter 27). 

Nonetheless, because the brain is an enormously complex and dynamic system, because it 

is not possible to record from all components of this system at the same time, and because 

data contain noise, it is difficult to determine unambiguously whether a pattern of bivari-

ate connectivity is truly causal. If claims about directionality or causality are important for 

your experiment and for interpreting your results, use directional methods such as Granger 

prediction and try to buttress your interpretation of causality or directionality with theory, 

known anatomical directional connectivity, previous relevant research, and, if possible, 

causal interference methods such as transcranial magnetic or electrical stimulation. 

 Third, phase-based and power-based measures of connectivity tend to reveal different 

patterns of results. This is not surprising from a mathematical perspective because phase 

and power are mostly independent measures. Phase and power likely reflect different 

C
lag = 5 ms

lag = 20 ms
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A)  The common input problem B)  The “who’s first” problem
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lag: 10 ms

lag: 56 msB

B

 Figure 25.1 
Two scenarios to keep in mind when interpreting temporally lagged bivariate connectivity results. 
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neurophysiological dynamics, with phase likely reflecting the timing of activity within a 

neural population and power likely reflecting the number of neurons or spatial extent of the 

neural population (chapter 21). However, the neurophysiological processes that contribute 

to phase-based versus power-based connectivity are not entirely clear, and too little cogni-

tive electrophysiological research has been done to know when it is best to use phase-based 

versus power-based connectivity analyses, although phase-based connectivity is more com-

monly used in the literature. In general, however, phase-based connectivity analyses are 

useful for hypotheses concerning instantaneous connectivity (that is, at the same time, not 

necessary at zero phase lag), whereas power-based connectivity analyses are more robust to 

temporal offsets and jitters. 

 Fourth, a distinction can be made between functional and effective connectivity. 

Functional connectivity refers to linear or nonlinear covariation between fluctuations in 

activity recorded from distinct neural networks, and effective connectivity refers to a causal 

influence of activity in one neural network over activity in another neural network (Friston 

1994). Thus, the distinction between functional and effective connectivity is analogous to a 

distinction between correlation and causation. 

 Fifth, many connectivity results can be confounded by volume conduction. Care must 

be taken to investigate and address this alternative hypothesis, and results must be inter-

preted cautiously in light of this potential confound and the ways to address it. This topic is 

discussed further in section 25.10. 

 25.3   Which Measure of Connectivity Should Be Used? 

 There are several classes of bivariate connectivity analyses (e.g., phase based vs. power based), 

several different analyses within each class, and several parameters and analysis options 

of each analysis. Each analysis has its advantages and limitations, and different measures 

are better suited for different purposes or assumptions about underlying neurocognitive 

processes. The following sections briefly describe the connectivity analyses discussed in this 

book and their advantages and limitations. 

 There is no correct or best connectivity method. Even when simulated data with known 

connectivity patterns are used, there may be no clear  “ winner ”  method that outperforms all 

other methods in all situations (Ansari-Asl et al. 2006; David, Cosmelli, and Friston 2004; 

Wendling et al. 2009). Some methods are more amenable to hypothesis testing, whereas 

others are more amenable to exploratory analyses. Some methods have a clear neurophysi-

ological interpretation, whereas others are more based on computer science and engineering 

principles. Some methods are established and widely used, and other methods are novel and 
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more open to development and validation. Although this plethora of connectivity methods 

may seem to complicate cognitive electrophysiology research, it also provides increased flex-

ibility for custom-tailoring analyses to specific research questions or goals. 

 If you would like to test for connectivity but do not know which measure you should 

use, first consider your hypotheses and expectations and which methods are best suited 

to address your research questions. You can also use the same connectivity methods used 

in publications that have a similar experiment design or similar kind of data. In general, it 

is a good idea to start with commonly used connectivity methods that are appropriate for 

your hypotheses and apply more sophisticated or less established connectivity measures only 

when your questions are not addressed by the less sophisticated methods or when the less 

sophisticated methods are difficult to interpret (e.g., if spurious connectivity due to artifacts 

cannot be ruled out). 

25.4   Phase-Based Connectivity 

 Phase-based connectivity analyses (described in greater detail in chapter 26) rely on the dis-

tribution of phase angle differences between two electrodes, with the idea that when neural 

populations are functionally coupled, the timing of their oscillatory processes, as measured 

through phase, becomes synchronized. The mathematics of phase-based connectivity analy-

ses is similar to that underlying ITPC (chapter 19). 

 There are several advantages to phase-based connectivity analyses. They are widely 

used in many experiments and across many species, and they have been used to examine 

network formation and network dynamics on many spatial and temporal scales. This is partly 

because phase-based connectivity analyses have a neurophysiological interpretation. These 

analyses are computationally fast, and thus, the results can be inspected quickly, and the 

analyses require few assumptions or parameter selections other than the parameters already 

selected for the time-frequency decomposition. Some phase-based analyses are also insensi-

tive to time lag (others are sensitive to lag), meaning that as long as the temporal relationship 

between activity at two electrodes is consistent over time and/or trials, the phase lag will not 

affect the strength of the connectivity. 

 There are also a few disadvantages. Phase-based measures rely on precise temporal 

relationships, usually in the identical frequency band, and are therefore susceptible to 

temporal jitter or uncertainty in the precise timing of experiment events. These temporal 

uncertainties can have more significant effects at higher frequencies, as discussed in chapter 

19. Second, phase-based measures do not provide compelling evidence for directionality for 

reasons outlined in section 25.2 and   figure 25.1B . 
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25.5   Power-Based Connectivity 

Power-based connectivity analyses (described in greater detail in chapter 27) involve correlat-

ing time-frequency power between two electrodes across time or over trials. These correla-

tions can be computed between activity in the same or different frequencies and at the same 

or different time points. 

 Power-based connectivity measures provide ample opportunities for flexible analyses that 

can be custom-tailored toward testing specific hypotheses, and they can also be used for 

data-driven exploratory analyses. Power-based connectivity measures are arguably the most 

similar to connectivity measures often used in fMRI such as the psychophysiological interac-

tion (which is based on correlating the BOLD time series between pairs of voxels), because 

the correlated fluctuations in activity are relatively slower, compared to phase-based connec-

tivity measures. Power-based connectivity measures are also relatively insensitive to temporal 

jitter and uncertainty, as was shown in figure 19.9. 

 25.6   Granger Prediction 

 Granger prediction (also called Granger causality; described in greater detail in chapter 28) 

tests whether variance in one signal can be predicted from variance in another signal earlier 

in time. Granger prediction is similar to, and in some cases identical to, other autoregression-

based estimates of directed connectivity, including the directed transfer function (Kaminski 

et al. 2001) and partial directed coherence. 

 The main advantages of Granger prediction are that it tests for and can dissociate direc-

tional connectivity, that is, A  →  B versus B  →  A connectivity. It can ignore simultaneous 

connectivity, which makes it less susceptible to volume conduction. There are several sophis-

ticated analyses of multivariate networks that are based on Granger prediction, although 

usually in the literature (and in this book), the  “ basic ”  bivariate Granger prediction analyses 

are applied. 

 There are a few disadvantages of Granger prediction. It is sensitive to violations of sta-

tionarity, can be computationally time-consuming to perform, and doubles the number 

of results because each pair of electrodes contains two connectivity values (estimates 

of both A  →  B and B  →  A connectivity). If Granger prediction is used in an exploratory 

fashion, there will be twice the number of statistical comparisons that need to be 

controlled for, and thus, Granger prediction may become tedious for large-scale exploratory 

analyses. 
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25.7   Mutual Information 

 Mutual information is a simple but robust method of detecting shared information between 

two variables. It is computed based on the distributions of values within variables and the 

joint distribution of two (or more) variables (see it described in greater detail in chapter 29). 

 There are several advantages of mutual information analyses. First, mutual information 

can detect many kinds of relationships, including linear and nonlinear interactions that a 

correlation would fail to identify. For example, a circle has a correlation coefficient of zero 

but a mutual information value greater than zero. Second, mutual information has a long 

tradition of use and development in engineering and information technology. Finally, there 

are also several extensions for using mutual information and entropy to estimate system 

complexity or signal transmission integrity (e.g., channel-coding theorem). 

 There are also a few disadvantages of using mutual information for examining brain con-

nectivity. First, mutual information does not provide information as to whether a relation-

ship is linear or nonlinear, or positive or negative. Second, it is sensitive to the number 

of histogram bins. This is easy to control for but could be a significant confound if not 

addressed during analyses. Third, it can be computationally intensive, particularly if used for 

exploratory analyses. Finally, although it is a widely used signal-processing technique and 

may be particularly advantageous for quantifying nonlinear interactions, it does not have a 

clear neurophysiological interpretation. 

 25.8   Cross-Frequency Coupling 

 Cross-frequency coupling (described in greater detail in chapter 30) refers to a statistical 

relationship between activities in two different frequency bands. It can be used to infer 

local organization (when measured at a single electrode) and long-range connectivity 

(when activity from the two frequency bands is measured from different electrodes). Cross-

frequency coupling has been observed in several species and has been linked to cognitive and 

perceptual processes (Canolty and Knight 2010) and disease states (Allen et al. 2011). 

 There are several advantages of cross-frequency coupling. It provides findings that can be 

linked across species and to computational models, and there are theories proposing a key 

role of cross-frequency coupling in information processing in the brain (e.g., Lisman 2005). 

Cross-frequency coupling might also help identify task-related high-frequency power, which 

may be difficult to identify with EEG in trial-averaging-based analyses (Nunez and Srinivasan 

2010). 
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The main disadvantage (which can be an advantage if you enjoy exploratory data 

mining) is that there is a potentially huge search space (frequencies  ×  frequencies  ×  electrodes 

 ×  electrodes  ×  conditions  ×  time), which means that cross-frequency coupling analyses can 

be time-consuming and that there are many tests to control for during statistical evaluation. 

These can be minimized if you have hypotheses to help constrain the analyses. 

 25.9   Graph Theory 

 Graph theory (described in greater detail in chapter 31) is a mathematical framework for 

characterizing networks that can be represented as graphs containing nodes and vertices 

(for EEG connectivity, nodes and vertices are, respectively, electrodes and connectivity 

strengths). There are many analyses that fall under the umbrella term graph theory, and they 

are generally useful for providing summary information regarding large-scale or multivariate 

network dynamics. 

 There are several advantages of graph-theory-based analyses. They provide useful and 

often easy-to-interpret characterizations of multivariate networks. Because graph theory 

provides a general mathematical framework for conceptualizing networks, the same analy-

ses can be applied to very different kinds of data, and high-level summary variables can 

be directly compared across, for example, EEG connectivity, diffusion MRI connectivity, 

and interneuron spike co-timing. Thus, graph-theory-based approaches can facilitate cross-

methods and cross-species comparisons. Graph theory is arguably an underutilized analysis 

framework in cognitive electrophysiology that may provide novel insights into the electro-

physiological network-level mechanisms of cognitive processes. 

 The main disadvantage of graph-theory-based measures is that they are often (although 

not always) used in exploratory data-mining analyses that lack a theoretical framework 

within which to understand the findings and link the results to other known functional 

properties of the brain. The reason this can be a disadvantage is that there are many graph-

theory-based metrics that are used and relatively few applications, and it can be difficult 

to compare findings across studies that use different methods and that do not test specific 

hypotheses. 

 25.10   Potential Confound of Volume Conduction 

 Volume conduction is a potential confound that can lead to spurious connectivity results. 

There are two related concerns. First, sources in the brain generate large electromagnetic 

fields that are measured by more than one EEG electrode or MEG sensor, thus introducing 
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spatial autocorrelation at the electrode level (  figure 25.2B ). This problem affects both EEG 

and MEG. The second issue is that electrical fields spread  “ laterally ”  through head tissues 

(skull, skin, etc.) and thus spread to neighboring electrodes (figure 22.1A and   figure 25.2C ). 

This problem affects EEG only; magnetic fields pass through these tissues undisturbed. 

 Volume conduction precludes an easy interpretation of brain localization based on elec-

trode data, and it presents potential confounds for many but not all connectivity analyses. 

The confound is that connectivity between two electrodes could reflect true connectivity 

between different brain regions or could be due to those two electrodes measuring activity 

from the same brain sources (  figure 25.2 ).    

 There are several options for addressing these potential confounds for connectivity analy-

ses. No single option is optimal in all situations; instead, how you address this confound 

depends on the type of analysis performed and on the experimental design. It also depends 

on how hypothesis-driven versus exploratory your analyses are. Hypothesis-driven analyses 

typically involve a small number of tests. Thus, you might want to use analysis methods that 

have maximal sensitivity to detect true brain connectivity and then examine each effect for 

potential confounds. On the other hand, exploratory analyses typically involve a very large 

 Figure 25.2 
 Illustration of the danger of volume conduction for interpreting interelectrode connectivity results. The 

black/gray rings represent electrodes, the black arrow between them illustrates measured connectivity, 

the stars represent neural sources in the brain, and the white arrows represent the path of electrical or 

magnetic activity from those sources. Ideally (panel A), each electrode measures only neural activity 

below the electrode, and thus, connectivity between two electrodes reflects connectivity between two 

physically distinct brain regions. Unfortunately, however, this situation cannot be assumed for EEG 

analyses: each electrode measures activity from overlapping brain regions (panel B), thus leading to the 

possibility that connectivity between two electrodes simply reflects those electrodes measuring activity 

from the same brain source. Furthermore, electrical fields can spread tangentially through the skull/

scalp, causing further concern for EEG connectivity analyses (panel C). 

A)   Connectivity: OK B)   Connectivity: NOT OK C)   Connectivity: NOT OK
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number of tests, and it is impractical to examine whether each finding may be contaminated 

by volume conduction. Thus, you might want to use methods that are insensitive to volume 

conduction even though those methods may have decreased sensitivity to detect true brain 

connectivity. 

 If your connectivity finding is an artifact of volume conduction, you can expect the 

following pattern of results: 

 1.    Zero or  π  phase lag    Because volume-conducted activity is recorded instantaneously at 

multiple electrodes (within measurement capabilities), spurious connectivity due to volume 

conduction will have zero phase lag (or   π   phase lag if the electrodes are on opposite sides of 

the dipole). However, this is complicated by the fact that there is true zero-phase-lag con-

nectivity in the brain (Chawla, Friston, and Lumer 2001; Roelfsema et al. 1997; Viriyopase 

et al. 2012). Thus, zero-lag or   π  -lag connectivity can reflect volume conduction, or it can 

reflect true zero-phase-lag brain connectivity. 

 2.    Very strong connectivity at neighboring electrodes and a decrease of connectivity strength with 

increasing interelectrode distance    The relationship between connectivity and interelectrode 

distance is somewhat complicated by cortical anatomy and dipole orientation, but in gen-

eral, spurious connectivity due to volume conduction will be stronger with electrodes that 

are closer to each other, particularly for EEG. An example of this is shown in figures 22.7 

and 22.8. 

 3.    Positive correlations    In the frequency and time-frequency domains, spurious connectivity 

due to volume conduction can only cause positive correlations. Time-domain connectivity 

would show negative correlations if the two electrodes are on opposite sides of the dipole. 

 4.    Positive correlations between connectivity and power in the same frequency band    If volume 

conduction is driving the connectivity, changes in power should correlate with changes in 

connectivity. 

 If your connectivity results are consistent with these four predictions, you should be 

concerned that those connectivity results are artifacts of volume conduction. On the other 

hand, if your results fail to conform to these predictions, it is unlikely that your connectivity 

results are due to volume conduction. 

 There are at least 10 approaches to addressing the potential contamination of volume 

conduction. Some of these approaches help minimize but do not necessarily completely 

eliminate volume conduction; thus, you may need to combine several of the following 

strategies. 

 1.   Apply a spatial filter prior to computing connectivity, such as the surface Laplacian or 

source imaging. Most spatial filters will attenuate effects of volume conduction and therefore 
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render the data more appropriate for connectivity analyses. The surface Laplacian is a good 

spatial filter for electrode-level analyses, and distributed adaptive source solutions such as 

beamforming are good spatial filters for source-space analyses. However, spatial filtering 

does not guarantee that volume conduction is completely eliminated (particularly for neigh-

boring electrodes or neighboring voxels), so you should still be cautious of connectivity 

results after application of a spatial filter, particularly for electrodes that are physically close 

to each other. 

2.   Examine only negative correlations in the frequency or time-frequency domains. 

Negative correlations in power at the same frequency band cannot be due to volume conduc-

tion. This option is not always a feasible approach because whether negative correlations can 

be expected depends on your task and on your hypotheses. 

3.   Test for temporally lagged connectivity rather than zero-phase connectivity. Because 

volume conduction is instantaneous, temporally lagged connectivity is less affected by 

volume conduction. Keep in mind, however, that temporally lagged connectivity does not 

necessarily eliminate volume conduction for all analyses because of temporal autocorrela-

tion. Imagine that you have a signal comprising random numbers that you filter at 5 Hz, 

and then you correlate that signal with a 10-ms-lagged version of itself. You would still see a 

strong correlation between the  “ two ”  signals because at 5 Hz, the activity at one point in time 

is strongly correlated with activity 10 ms later due to temporal autocorrelation (see   figure 

25.3 ). The strength of temporal autocorrelation depends on the time-frequency decomposi-

tion characteristics and on the frequency (lower frequencies have stronger temporal autocor-

relation). Thus, temporally lagged connectivity measures help minimize volume conduction, 

but they do not eliminate it, particularly when the signals are first bandpass filtered. 

4.   Test for condition differences in connectivity rather than single-condition effects. Some 

types of biases that are introduced by connectivity analyses will affect all conditions equally. 

Thus, subtracting connectivity between conditions (or, in some cases, between electrode 

pairs) will attenuate biases and thus may also attenuate the effect of volume conduction. 

One example of this is shown in   figure 25.3 . This figure shows that spurious connectivity 

resulting from bandpass filtering a signal made from random numbers is attenuated when 

connectivity results are compared across  “ conditions ”  (in this case, conditions are simulated 

simply as two different signals).    

 5.   Test for a cross-frequency correlation (e.g., whether 6-Hz activity in one electrode corre-

lates with 20-Hz activity in another electrode). If the 6-Hz and 20-Hz power activities are not 

correlated within each electrode, the correlation across electrodes cannot be due to volume 

conduction. Correlations across frequency bands should be interpreted cautiously if activity 

at those two frequency bands is correlated within one or both electrodes individually. For 
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example, if one electrode exhibits a correlated gamma power increase and an alpha power 

decrease, then negative correlations between alpha at that electrode and gamma at a differ-

ent electrode could reflect volume conduction of the combined alpha/gamma effect. 

6.   Test for a statistical or qualitative dissociation between connectivity and power. For exam-

ple, if connectivity between electrodes A and B increases but power simultaneously decreases, 

the connectivity cannot be due to volume conduction. A distinction between dynamics in 

power and dynamics in connectivity could be examined in several ways other than trial-

averaged results. For example, you could test whether trial-to-trial fluctuations in connec-

tivity and power covary with trial-to-trial fluctuations in behavior or stimulus properties. If 

connectivity correlates with behavior but power does not, the connectivity is thus decoupled 

from the power. Any dissociation between connectivity between electrodes and power at one 

or both electrodes provides evidence against volume conduction. These results should also be 
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 Figure 25.3 
Illustration of how autocorrelation can be induced from bandpass filtering and how condition sub-

tractions can attenuate the autocorrelation inflations. Panel A shows two signals generated by random 

numbers (gray lines) and the result of bandpass filtering each of those signals at 5 Hz (black lines; this 

was achieved by taking the real part of a convolution between the signals and a 5-Hz wavelet). Panel 

B shows autoconnectivity as a function of lag. Connectivity was computed between one signal and a 

lagged version of itself for 200 ms of lags (this corresponds to one cycle at 5 Hz). The  y -axis refers to 

Pearson correlation ( “ power corr ” ) or a measure of phase-based connectivity that is discussed in 

chapter 26 ( “ ISPC ” ). The thin gray line shows that before bandpass filtering, there is no autoconnec-

tivity, whereas autoconnectivity is introduced by bandpass filtering. Subtracting the autoconnectivity 

values between signals ( “ diffs ” ; analogous to condition differences) attenuates the spurious connectiv-

ity. Some residual spurious connectivity after condition differences would be further attenuated when 

averaging is done over many trials. 
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interpreted with caution: a correlation between power and connectivity does not necessarily 

mean that the connectivity is due to volume conduction, but such a correspondence makes 

it more difficult to rule out the volume conduction alternative explanation. 

7.   Test whether the phase lag of connectivity between electrodes is significantly different 

from zero or   π  . Although zero-phase-lag connectivity can reflect true brain connectivity or 

volume-conducted activity, nonzero phase lag cannot be due to volume conduction. One 

limitation of this approach is that phase lags that are not zero but are close to zero may still 

be statistically indistinguishable from zero (section 26.10 provides a statistical test for phase 

angles). 

 8.   For phase-based connectivity, you can use measures that are insensitive to volume 

conduction such as imaginary coherence, phase-lag index, weighted phase-lag index, or 

phase-slope-index. 

 9.   For power-based connectivity, you can compute partial correlations between two elec-

trodes holding constant a third electrode. This third electrode can be a neighbor of one of the 

electrodes. The idea is that the power time series of two neighboring electrodes are strongly 

correlated because of volume conduction; by computing partial correlations, shared vari-

ance that is mainly due to volume conduction with a neighboring electrode will be removed 

(section 27.4). 

 10.   For power-based connectivity you can modify pairs of time series before calculating con-

nectivity such that the coherent real parts (which include volume conduction effects) are 

removed, thereby removing any potentially volume-conducted signals (Hipp et al. 2012). 

This is complementary to using volume-conduction-independent measures because instead 

of ignoring potentially volume-conducted activity during the analysis, parts of the data that 

potentially contain volume-conducted signal are removed. 




