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Chapter 2

Electrophysiology of Neurons

In this chapter we remind the reader of some fundamental concepts of neuronal electro-
physiology that are necessary to understand the rest of the book. We start with ions
and currents, and move quickly toward the dynamics of the Hodgkin-Huxley model.
If the reader is already familiar with the Hodgkin-Huxley formalism, this chapter can
be skipped. Our exposition is brief, and it cannot substitute for a good introductory
neuroscience course or the reading of such excellent textbooks as Theoretical Neu-
roscience by Dayan and Abbott (2001), Foundations of Cellular Neurophysiology by
Johnston and Wu (1995), Biophysics of Computation by Koch (1999), or Ion Channels
of Excitable Membranes by Hille (2001).

2.1 Ions

Electrical activity in neurons is sustained and propagated via ionic currents through
neuron membranes. Most of these transmembrane currents involve one of four ionic
species: sodium (Na+), potassium (K+), calcium (Ca2+), or chloride (Cl−). The first
three have a positive charge (cations) and the fourth has a negative charge (anion). The
concentrations of these ions are different on the inside and the outside of a cell, which
creates electrochemical gradients – the major driving forces of neural activity. The
extracellular medium has a high concentration of Na+ and Cl− (salty, like seawater)
and a relatively high concentration of Ca2+. The intracellular medium has high con-
centrations of K+ and negatively charged molecules (denoted by A−), as we illustrate
in Fig.2.1.

The cell membrane has large protein molecules forming channels through which
ions (but not A−) can flow according to their electrochemical gradients. The flow of
Na+ and Ca2+ ions is not significant, at least at rest, but the flow of K+ and Cl− ions
is. This, however, does not eliminate the concentration asymmetry for two reasons.

• Passive redistribution. The impermeable anions A− attract more K+ into the cell
(opposites attract) and repel more Cl− out of the cell, thereby creating concen-
tration gradients.

• Active transport. Ions are pumped in and out of the cell via ionic pumps. For
example, the Na+-K+ pump depicted in Fig.2.1 pumps out three Na+ ions for
every two K+ ions pumped in, thereby maintaining concentration gradients.
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Figure 2.1: Ion concentrations and Nernst equilibrium potentials (2.1) in a typical
mammalian neuron (modified from Johnston and Wu 1995). A− are membrane-
impermeant anions. Temperature T = 37◦C (310◦K).

2.1.1 Nernst Potential

There are two forces that drive each ion species through the membrane channel: concen-
tration and electric potential gradients. First, the ions diffuse down the concentration
gradient. For example, the K+ ions depicted in Fig.2.2a diffuse out of the cell because
K+ concentration inside is higher than that outside. While exiting the cell, K+ ions
carry a positive charge and leave a net negative charge inside the cell (consisting mostly
of impermeable anions A−), thereby producing the outward current. The positive and
negative charges accumulate on the opposite sides of the membrane surface, creating
an electric potential gradient across the membrane – transmembrane potential or mem-
brane voltage. This potential slows the diffusion of K+, since K+ ions are attracted
to the negatively charged interior and repelled from the positively charged exterior of
the membrane, as we illustrate in Fig.2.2b. At some point an equilibrium is achieved:
the concentration gradient and the electric potential gradient exert equal and opposite
forces that counterbalance each other, and the net cross-membrane current is zero, as
in Fig.2.2c. The value of such an equilibrium potential depends on the ionic species,
and it is given by the Nernst equation (Hille 2001):

Eion =
RT

zF
ln

[Ion]out

[Ion]in
, (2.1)

where [Ion]in and [Ion]out are concentrations of the ions inside and outside the cell,
respectively; R is the universal gas constant (8, 315 mJ/(K◦·Mol)); T is temperature
in degrees Kelvin (K◦ = 273.16+C◦); F is Faraday’s constant (96, 480 coulombs/Mol),
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Figure 2.2: Diffusion of K+ ions down the concentration gradient though the membrane
(a) creates an electric potential force pointing in the opposite direction (b) until the
diffusion and electrical forces counter each other (c). The resulting transmembrane
potential (2.1) is referred to as the Nernst equilibrium potential for K+.

z is the valence of the ion (z = 1 for Na+ and K+; z = −1 for Cl−; and z = 2 for
Ca2+). Substituting the numbers, taking log10 instead of natural ln and using body
temperature T = 310◦K (37◦C) results in

Eion ≈ 62 log
[Ion]out

[Ion]in
(mV)

for monovalent (z = 1) ions. Nernst equilibrium potentials in a typical mammalian
neuron are summarized in Fig.2.1.

2.1.2 Ionic Currents and Conductances

In the rest of the book V denotes the membrane potential and ENa, ECa, EK, and ECl

denote the Nernst equilibrium potentials. When the membrane potential equals the
equilibrium potential, say EK, the net K+ current, denoted as IK (μA/cm2), is zero
(this is the definition of the Nernst equilibrium potential for K+). Otherwise, the net
K+ current is proportional to the difference of potentials; that is,

IK = gK (V − EK) ,

where the positive parameter gK (mS/cm2) is the K+ conductance and (V −EK) is the
K+ driving force. The other major ionic currents,

INa = gNa (V − ENa) , ICa = gCa (V − ECa) , ICl = gCl (V − ECl) ,
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sentation of a patch of cell membrane.

could also be expressed as products of nonlinear conductances and corresponding driv-
ing forces. A better description of membrane currents, especially Ca2+ current, is
provided by the Goldman-Hodgkin-Katz equation (Hille 2001), which we do not use in
this book.

When the conductance is constant, the current is said to be Ohmic. In general,
ionic currents in neurons are not Ohmic, since the conductances may depend on time,
membrane potential, and pharmacological agents, e.g., neurotransmitters, neuromodu-
lators, second-messengers, etc. It is the time-dependent variation in conductances that
allows a neuron to generate an action potential, or spike.

2.1.3 Equivalent Circuit

It is traditional to represent electrical properties of membranes in terms of equivalent
circuits similar to the one depicted in Fig.2.3. According to Kirchhoff’s law, the total
current, I, flowing across a patch of a cell membrane is the sum of the membrane
capacitive current CV̇ (the capacitance C ≈ 1.0 μF/cm2 in the squid axon) and all the
ionic currents

I = CV̇ + INa + ICa + IK + ICl ,

where V̇ = dV/dt is the derivative of the voltage variable V with respect to time t.
The derivative arises because it takes time to charge the membrane. This is the first
dynamic term in the book! We write this equation in the standard “dynamical system”
form

CV̇ = I − INa − ICa − IK − ICl (2.2)

or

CV̇ = I − gNa (V − ENa) − gCa (V − ECa) − gK (V − EK) − gCl (V − ECl) . (2.3)

If there are no additional current sources or sinks, such as synaptic current, axial
current, or tangential current along the membrane surface, or current injected via an
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electrode, then I = 0. In this case, the membrane potential is typically bounded by
the equilibrium potentials in the order (see Fig.2.4)

EK < ECl < V(at rest) < ENa < ECa ,

so that INa, ICa < 0 (inward currents) and IK, ICl > 0 (outward currents). From (2.2)
it follows that inward currents increase the membrane potential, that is, make it more
positive (depolarization), whereas outward currents decrease it, that is, make it more
negative (hyperpolarization). Note that ICl is called an outward current even though
the flow of Cl− ions is inward; the ions bring negative charge inside the membrane,
which is equivalent to positively charged ions leaving the cell, as in IK.

2.1.4 Resting Potential and Input Resistance

If there were only K+ channels, as in Fig.2.2, the membrane potential would quickly
approach the K+ equilibrium potential, EK, which is around −90 mV. Indeed,

C V̇ = −IK = −gK(V − EK)

in this case. However, most membranes contain a diversity of channels. For example,
Na+ channels would produce an inward current and pull the membrane potential toward
the Na+ equilibrium potential, ENa, which could be as large as +90 mV. The value of
the membrane potential at which all inward and outward currents balance each other so
that the net membrane current is zero corresponds to the resting membrane potential.
It can be found from (2.3) with I = 0, by setting V̇ = 0. The resulting expression,

Vrest =
gNaENa + gCaECa + gKEK + gClECl

gNa + gCa + gK + gCl

(2.4)

has a nice mechanistic interpretation: Vrest is the center of mass of the balance depicted
in Fig.2.4. Incidentally, the entire equation (2.3) can be written in the form

C V̇ = I − ginp(V − Vrest) , (2.5)

where
ginp = gNa + gCa + gK + gCl

is the total membrane conductance, called input conductance. The quantity Rinp =
1/ginp is the input resistance of the membrane, and it measures the asymptotic sensi-
tivity of the membrane potential to injected or intrinsic currents. Indeed, from (2.5) it
follows that

V → Vrest + IRinp , (2.6)

so greater values of Rinp imply greater steady-state displacement of V due to the
injection of DC current I.

A remarkable property of neuronal membranes is that ionic conductances, and hence
the input resistance, are functions of V and time. We can use (2.6) to trace an action
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Figure 2.4: Mechanistic interpretation of the resting membrane potential (2.4) as the
center of mass. Na+ conductance increases during the action potential.

potential in a quasi-static fashion, i.e., assuming that time is frozen. When a neuron is
quiescent, Na+ and Ca2+ conductances are relatively small, Vrest is near EK and ECl,
as in Fig.2.4 (top), and so is V . During the upstroke of an action potential, the Na+

or Ca2+ conductance becomes very large; Vrest is near ENa, as in Fig.2.4 (bottom), and
V increases, trying to catch Vrest. This event is, however, quite brief, for the reasons
explained in subsequent sections.

2.1.5 Voltage-Clamp and I-V Relation

In section 2.2 we will study how the membrane potential affects ionic conductances
and currents, assuming that the potential is fixed at certain value Vc controlled by an
experimenter. To maintain the membrane potential constant (clamped), one inserts
a metallic conductor to short-circuit currents along the membrane (space-clamp), and
then injects a current proportional to the difference Vc − V (voltage-clamp), as in
Fig.2.5. From (2.2) and the clamp condition V̇ = 0, it follows that the injected current
I equals the net current generated by the membrane conductances.

In a typical voltage-clamp experiment the membrane potential is held at a certain
resting value Vc and then reset to a new value Vs, as in Fig.2.6a. The injected membrane
current needed to stabilize the potential at the new value is a function of time, the
pre-step holding potential Vc, and the step potential Vs. First, the current jumps to
a new value to accommodate the instantaneous voltage change from Vc to Vs. From
(2.5) we find that the amplitude of the jump is ginp(Vs − Vc). Then, time- and voltage-
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proportional to the difference Vc − V , to keep the membrane potential at Vc.

-100 -50 0 50

-400

-200

0

200

400

600

0 1 2 3 4 5

- 500

0

500

1000

1500

2000

time, ms

membrane  potential, V (mV)

cu
rr

en
t, 

I (
pA

)

cu
rr

en
t, 

I (
pA

)

prestep
potential

step potentials

Vc
Vs

Vs

instantaneous I-V

steady-state I-V

I0(Vc,Vs)

I   (Vs)
I0(Vc,Vs)

I   (Vs)

(a) (b)

in
w

ar
d

ou
tw

ar
d

Figure 2.6: Voltage-clamp experiment to measure instantaneous and steady-state I-V
relation. Shown are simulations of the INa+IK-model (see Fig.4.1b); the continuous
curves are theoretically found I-V relations.

dependent processes start to occur and the current decreases and then increases. The
value at the negative peak, marked by the open circle “o” in Fig.2.6, depends only on Vc

and Vs, and it is called the instantaneous current-voltage (I-V) relation, or I0(Vc, Vs).
The asymptotic (t → ∞) value depends only on Vs and it is called the steady-state
current-voltage (I-V) relation, or I∞(Vs).

Both relations, depicted in Fig.2.6b, can be found experimentally (black circles) or
theoretically (curves). The instantaneous I-V relation usually has a non-monotone N-
shape reflecting nonlinear autocatalytic (positive feedback) transmembrane processes,
which are fast enough on the time scale of the action potential that they can be assumed
to have instantaneous kinetics. The steady-state I-V relation measures the asymptotic
values of all transmembrane processes, and it may be monotone (as in the figure) or
not, depending on the properties of the membrane currents. Both I-V relations provide
invaluable quantitative information about the currents operating on fast and slow time
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Figure 2.7: To tease out neuronal currents, biologists employ an arsenal of sophisticated
“clamp” methods, such as current-, voltage-, conductance-, and dynamic-clamp.

scales, and both are useful in building mathematical models of neurons. Finally, when
I∞(V ) = 0, the net membrane current is zero, and the potential is at rest or equilibrium,
which may still be unstable, as we discuss in the next chapter.

2.2 Conductances

Ionic channels are large transmembrane proteins having aqueous pores through which
ions can flow down their electrochemical gradients. The electrical conductance of indi-
vidual channels may be controlled by gating particles (gates), which switch the channels
between open and closed states. The gates may be sensitive to the following factors:

• Membrane potential. Example: voltage-gated Na+ or K+ channels

• Intracellular agents (second-messengers). Example: Ca2+-gated K+ channels

• Extracellular agents (neurotransmitters and neuromodulators). Examples: AMPA,
NMDA, or GABA receptors.

Despite the stochastic nature of transitions between open and closed states in individual
channels, the net current generated by a large population or ensemble of identical
channels can reasonably be described by the equation

I = ḡ p (V − E) , (2.7)

where p is the average proportion of channels in the open state, ḡ is the maximal
conductance of the population, and E is the reverse potential of the current, i.e., the
potential at which the current reverses its direction. If the channels are selective
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and Hille 1998.)

for a single ionic species, then the reverse potential E equals the Nernst equilibrium
potential (2.1) for that ionic species (see exercise 2).

2.2.1 Voltage-Gated Channels

When the gating particles are sensitive to the membrane potential, the channels are
said to be voltage-gated. The gates are divided into two types: those that activate or
open the channels, and those that inactivate or close them (see Fig.2.8). According to
the tradition initiated in the middle of the twentieth century by Hodgkin and Huxley,
the probability of an activation gate being in the open state is denoted by the variable
m (sometimes the variable n is used for K+ and Cl− channels). The probability of an
inactivation gate being in the open state is denoted by the variable h. The proportion
of open channels in a large population is

p = ma hb , (2.8)

where a is the number of activation gates and b is the number of inactivation gates
per channel. The channels can be partially (0 < m < 1) or completely activated
(m = 1); not activated or deactivated (m = 0); inactivated (h = 0); released from
inactivation or deinactivated (h = 1). Some channels do not have inactivation gates
(b = 0), hence p = ma. Such channels do not inactivate, and they result in persistent
currents. In contrast, channels that do inactivate result in transient currents.

Below we describe voltage- and time-dependent kinetics of gates. This description
is often referred to as the Hodgkin-Huxley gate model of membrane channels.
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sient K+ current in layer 5 neocortical pyramidal neurons. (Modified from Korngreen
and Sakmann 2000.)

2.2.2 Activation of Persistent Currents

The dynamics of the activation variable m is described by the first-order differential
equation

ṁ = (m∞(V ) − m)/τ(V ) , (2.9)

where the voltage-sensitive steady-state activation function m∞(V ) and the time con-
stant τ(V ) can be measured experimentally. They have sigmoid and unimodal shapes,
respectively, as in Fig.2.9 (see also Fig.2.20). The steady-state activation function
m∞(V ) gives the asymptotic value of m when the potential is fixed (voltage-clamp).
Smaller values of τ(V ) result in faster dynamics of m.

In Fig.2.10 we depict a typical experiment to determine m∞(V ) of a persistent
current, i.e., a current having no inactivation variable. Initially we hold the membrane
potential at a hyperpolarized value V0 so that all activation gates are closed and I ≈
0. Then we step-increase V to a greater value Vs (s = 1, . . . , 7; see Fig.2.10a) and
hold it there until the current is essentially equal to its asymptotic value, which is
denoted here as Is (s stands for “step”; see Fig.2.10b). Repeating the experiment
for various stepping potentials Vs, one can easily determine the corresponding Is, and
hence the entire steady-state I-V relation, which we depict in Fig.2.10c. According to
(2.7), I(V ) = ḡm∞(V )(V −E), and the steady-state activation curve m∞(V ) depicted
in Fig.2.10d is I(V ) divided by the driving force (V − E) and normalized so that
max m∞(V ) = 1. To determine the time constant τ(V ), one needs to analyze the
convergence rates. In exercise 6 we describe an efficient method to determine m∞(V )
and τ(V ).
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Figure 2.10: An experiment to determine m∞(V ). Shown are simulations of the per-
sistent Na+ current in Purkinje cells (see section 2.3.5).

2.2.3 Inactivation of Transient Currents

The dynamics of the inactivation variable h can be described by the first-order differ-
ential equation

ḣ = (h∞(V ) − h)/τ(V ) , (2.10)

where h∞(V ) is the voltage-sensitive steady-state inactivation function depicted in
Fig.2.11. In Fig.2.12 we present a typical voltage-clamp experiment to determine
h∞(V ) in the presence of activation m∞(V ). It relies on the observation that inacti-
vation kinetics is usually slower than activation kinetics. First, we hold the membrane
potential at a certain pre-step potential Vs for a long enough time that the activation
and inactivation variables are essentially equal to their steady-state values m∞(Vs) and
h∞(Vs), respectively, which have yet to be determined. Then we step-increase V to
a sufficiently high value V0, chosen so that m∞(V0) ≈ 1. If activation is much faster
than inactivation, m approaches 1 after the first few milliseconds, while h continues
to be near its asymptotic value hs = h∞(Vs), which can be found from the peak value
of the current Is ≈ ḡ · 1 · hs(Vs − E). Repeating this experiment for various pre-step
potentials, one can determine the steady-state inactivation curve h∞(V ) in Fig.2.11.
In exercise 6 we describe a better method to determine h∞(V ) that does not rely on
the difference between the activation and inactivation time scales.
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2.2.4 Hyperpolarization-Activated Channels

Many neurons in various parts of the brain have channels that are opened by hyperpo-
larization. These channels produce currents that are turned on by hyperpolarization
and turned off by depolarization. Biologists refer to such currents as “exceptional” or
“weird”, and denote them as IQ (queer), If (funny), Ih (hyperpolarization-activated),
or IKir (K+ inward rectifier). (We will consider the last two currents in detail in the
next chapter). Most neuroscience textbooks classify these currents in a special category
– hyperpolarization-activated currents. However, from the theoretical point of view, it
is inconvenient to create special categories. In this book we treat these currents as
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“normal” transient currents with the understanding that they are always activated
(either a = 0 or variable m = 1 in (2.8)), but can be inactivated by depolarization
(variable h → 0) or deinactivated by hyperpolarization (variable h → 1). Moreover,
there is biophysical evidence suggesting that closing/opening of IKir is indeed related
to the inactivation/deinactivation process (Lopatin et al. 1994).

2.3 The Hodgkin-Huxley Model

In section 2.1 we studied how the membrane potential depends on the membrane cur-
rents, assuming that ionic conductances are fixed. In section 2.2 we used the Hodgkin-
Huxley gate model to study how the conductances and currents depend on the mem-
brane potential, assuming that the potential is clamped at different values. In this
section we put it all together and study how the potential ↔ current nonlinear inter-
actions lead to many interesting phenomena, such as generation of action potentials.

2.3.1 Hodgkin-Huxley Equations

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model of the squid giant axon. Using pioneering experimental techniques of that
time, Hodgkin and Huxley (1952) determined that the squid axon carries three major
currents: voltage-gated persistent K+ current with four activation gates (resulting in
the term n4 in the equation below, where n is the activation variable for K+); voltage-
gated transient Na+ current with three activation gates and one inactivation gate (the
term m3h below), and Ohmic leak current, IL, which is carried mostly by Cl− ions.
The complete set of space-clamped Hodgkin-Huxley equations is

C V̇ = I −
IK︷ ︸︸ ︷

ḡKn4(V − EK) −
INa︷ ︸︸ ︷

ḡNam
3h(V − ENa) −

IL︷ ︸︸ ︷
gL(V − EL)

ṅ = αn(V )(1 − n) − βn(V )n

ṁ = αm(V )(1 − m) − βm(V )m

ḣ = αh(V )(1 − h) − βh(V )h ,

where

αn(V ) = 0.01
10 − V

exp(10−V
10

) − 1
,

βn(V ) = 0.125 exp

(−V

80

)
,

αm(V ) = 0.1
25 − V

exp(25−V
10

) − 1
,

βm(V ) = 4 exp

(−V

18

)
,
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αh(V ) = 0.07 exp

(−V

20

)
,

βh(V ) =
1

exp(30−V
10

) + 1
.

These parameters, provided in the original Hodgkin and Huxley paper, correspond
to the membrane potential shifted by approximately 65 mV, so that the resting po-
tential is at V ≈ 0. Hodgkin and Huxley did that for the sake of convenience, but
the shift has led to a lot of confusion over the years. The shifted Nernst equilibrium
potentials are

EK = −12 mV , ENa = 120 mV , EL = 10.6 mV;

(see also exercise 1). Typical values of maximal conductances are

ḡK = 36 mS/cm2 , ḡNa = 120 mS/cm2 , gL = 0.3 mS/cm2.

C = 1 μF/cm2 is the membrane capacitance and I = 0 μA/cm2 is the applied current.
The functions α(V ) and β(V ) describe the transition rates between open and closed
states of the channels. We present this notation only for historical reasons. In the rest
of the book, we use the standard form

ṅ = (n∞(V ) − n)/τn(V ) ,

ṁ = (m∞(V ) − m)/τm(V ) ,

ḣ = (h∞(V ) − h)/τh(V ) ,

where
n∞ = αn/(αn + βn) , τn = 1/(αn + βn) ,
m∞ = αm/(αm + βm) , τm = 1/(αm + βm) ,
h∞ = αh/(αh + βh) , τh = 1/(αh + βh)

as depicted in Fig.2.13. These functions can be approximated by the Boltzmann and
Gaussian functions; see Ex. 4. We also shift the membrane potential back to its true
value, so that the resting state is near -65 mV.

The membrane of the squid giant axon carries only two major currents: transient
Na+ and persistent K+. Most neurons in the central nervous system have additional
currents with diverse activation and inactivation dynamics, which we summarize in
section 2.3.5. The Hodgkin-Huxley formalism is the most accepted model to describe
their kinetics.

Since we are interested in geometrical and qualitative methods of analysis of neu-
ronal models, we assume that all variables and parameters have appropriate scales
and dimensions, but we do not explicitly state them. An exception is the membrane
potential V , whose mV scale is stated in every figure.
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Figure 2.13: Steady-state (in)activation functions (left) and voltage-dependent time
constants (right) in the Hodgkin-Huxley model.

Figure 2.14: Studies of spike-generation mechanism in “giant squid” axons won Alan
Hodgkin and Andrew Huxley the 1963 Nobel Prize for physiology or medicine (shared
with John Eccles). See also Fig. 4.1 in Keener and Sneyd (1998).
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Figure 2.15: Action potential in the Hodgkin-Huxley model.
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Figure 2.16: Positive and negative feedback loops resulting in excited (regenerative)
behavior in neurons.

2.3.2 Action Potential

Recall that when V = Vrest, which is 0 mV in the Hodgkin-Huxley model, all inward
and outward currents balance each other so the net current is zero, as in Fig.2.15. The
resting state is stable: a small pulse of current applied via I(t) produces a small positive
perturbation of the membrane potential (depolarization), which results in a small net
current that drives V back to resting (repolarization). However, an intermediate
size pulse of current produces a perturbation that is amplified significantly because
membrane conductances depend on V . Such a nonlinear amplification causes V to
deviate considerably from Vrest – a phenomenon referred to as an action potential or
spike.

In Fig.2.15 we show a typical time course of an action potential in the Hodgkin-
Huxley system. Strong depolarization increases activation variables m and n and de-
creases inactivation variable h. Since τm(V ) is relatively small, variable m is relatively
fast. Fast activation of Na+ conductance drives V toward ENa, resulting in further
depolarization and further activation of gNa. This positive feedback loop, depicted in
Fig.2.16, results in the upstroke of V . While V moves toward ENa, the slower gating
variables catch up. Variable h → 0, causing inactivation of the Na+ current, and vari-
able n → 1, causing slow activation of the outward K+ current. The latter and the
leak current repolarize the membrane potential toward Vrest.

When V is near Vrest, the voltage-sensitive time constants τn(V ) and τh(V ) are
relatively large, as one can see in Fig.2.13. Therefore, recovery of variables n and h is
slow. In particular, the outward K+ current continues to be activated (n is large) even
after the action potential downstroke, thereby causing V to go below Vrest toward EK

– a phenomenon known as afterhyperpolarization.

In addition, the Na+ current continues to be inactivated (h is small) and not avail-
able for any regenerative function. The Hodgkin-Huxley system cannot generate an-
other action potential during this absolute refractory period. While the current deinac-
tivates, the system becomes able to generate an action potential, provided the stimulus
is relatively strong (relative refractory period).

To study the relationship between these refractory periods, we stimulate the Hodgkin-
Huxley model with 1-ms pulses of current having various amplitudes and latencies. The
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Figure 2.17: Refractory periods in the Hodgkin-Huxley model with I = 3.

minimal amplitude of the stimulation needed to evoke a second spike in the model is
depicted in Fig.2.17 (bottom). Notice that around 14 ms after the first spike, the model
is hyper-excitable, that is, the stimulation amplitude is less than the baseline ampli-
tude Ap ≈ 6 needed to evoke a spike from the resting state. This occurs because the
Hodgkin-Huxley model exhibits damped oscillations of membrane potential (discussed
in chapter 7).

2.3.3 Propagation of the Action Potentials

The space-clamped Hodgkin-Huxley model of the squid giant axon describes non-
propagating action potentials since V (t) does not depend on the location, x, along
the axon. To describe propagation of action potentials (pulses) along the axon hav-
ing potential V (x, t), radius a (cm), and intracellular resistivity R (Ω·cm), the partial
derivative Vxx is added to the voltage equation to account for axial currents along the
membrane. The resulting nonlinear parabolic partial differential equation

C Vt =
a

2R
Vxx + I − IK − INa − IL

is often referred to as the Hodgkin-Huxley cable or propagating equation. Its important
type of solution, a traveling pulse, is depicted in Fig.2.18. Studying this equation goes
beyond the scope of this book; the reader can consult Keener and Sneyd (1998) and
references therein.
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Figure 2.18: Traveling pulse solution of the Hodgkin-Huxley cable equation at four
successive moments.

2.3.4 Dendritic Compartments

Modifications of the Hodgkin-Huxley model, often called Hodgkin-Huxley-type models
or conductance-based models, can describe the dynamics of spike-generation of many,
if not all, neurons recorded in nature. However, there is more to the computational
property of neurons than just the spike-generation mechanism. Many neurons have
an extensive dendritic tree that can sample the synaptic input arriving at different
locations and integrate it over space and time.

Many dendrites have voltage-gated currents, so the synaptic integration is non-
linear, sometimes resulting in dendritic spikes that can propagate forward to the soma
of the neuron or backward to distant dendritic locations. Dendritic spikes are prominent
in intrinsically bursting (IB) and chattering (CH) neocortical neurons considered in
chapter 8. In that chapter we also model regular spiking (RS) pyramidal neurons,
the most numerous class of neurons in mammalian neocortex, and show that their
spike-generation mechanism is one of the simplest. The computation complexity of RS
neurons must be hidden, then, in the arbors of their dendritic trees.

It is not feasible at present to study the dynamics of membrane potential in dendritic
trees either analytically or geometrically (i.e., without resort to computer simulations),
unless dendrites are assumed to be passive (linear) and semi-infinite, and to satisfy
Rall’s branching law (Rall 1959). Much of the insight can be obtained via simulations,
which typically replace the continuous dendritic structure in Fig.2.19a with a network
of discrete compartments in Fig.2.19b. Dynamics of each compartment is simulated by
a Hodgkin-Huxley-type model, and the compartments are coupled via conductances.
For example, if Vs and Vd denote the membrane potential at the soma and in the
dendritic tree, respectively, as in Fig.2.19c, then

CsV̇s = −Is(Vs, t) + gs(Vd − Vs) , and CdV̇d = −Id(Vd, t) + gd(Vs − Vd) ,
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dendrite
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neuron 2

Figure 2.19: A dendritic tree of a neuron (a) is replaced by a network of compart-
ments (b), each modeled by a Hodgkin-Huxley-type model. The two-compartment
neuronal model (c) may be equivalent to two neurons coupled via gap junctions (elec-
trical synapse) (d).

where each I(V, t) represents the sum of all voltage-, Ca2+-, and time-dependent cur-
rents in the compartment, and gs and gd are the coupling conductances that depend
on the relative sizes of dendritic and somatic compartments. One can obtain many
spiking and bursting patterns by changing the conductances and keeping all the other
parameters fixed (Pinsky and Rinzel 1994, Mainen and Sejnowski 1996).

Once we understand how to couple two compartments, we can do it for hundreds or
thousands of compartments. GENESIS and NEURON simulation environments could
be useful here, especially since they contain databases of dendritic trees reconstructed
from real neurons.

Interestingly, the somatic-dendritic pair in Fig.2.19c is equivalent to a pair of neu-
rons in Fig.2.19d coupled via gap-junctions. These are electrical contacts that allow
ions and small molecules to pass freely between the cells. Gap junctions are often
called electrical synapses, because they allow potentials to be conducted directly from
one neuron to another.

Computational study of multi-compartment dendritic processing is outside of the
scope of this book. We consider multi-compartment models of cortical pyramidal neu-
rons in chapter 8 and gap-junction coupled neurons in chapter 10 (which is on the
author’s webpage).

2.3.5 Summary of Voltage-Gated Currents

Throughout this book we model kinetics of various voltage-sensitive currents using the
Hodgkin-Huxley gate model

I = ḡ mahb(V − E)
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pretations of their parameters.

where
I - current , (μA/cm2),
V - membrane voltage, (mV),
E - reverse potential, (mV),
ḡ - maximal conductance, (mS/cm2),
m - probability of activation gate to be open,
h - probability of inactivation gate to be open,
a - the number of activation gates per channel,
b - the number of inactivation gates per channel.

The gating variables m and n satisfy linear first-order differential equations (2.9) and
(2.10), respectively. We approximate the steady-state activation curve m∞(V ) by the
Boltzmann function depicted in Fig.2.20,

m∞(V ) =
1

1 + exp {(V1/2 − V )/k} (2.11)

The parameter V1/2 satisfies m∞(V1/2) = 0.5, and k is the slope factor (negative for the
inactivation curve h∞(V )). Smaller values of |k| result in steeper m∞(V ).

The voltage-sensitive time constant τ(V ) can be approximated by the Gaussian
function

τ(V ) = Cbase + Camp exp
−(Vmax − V )2

σ2
, (2.12)

see Fig.2.20. The graph of the function is above Cbase with amplitude Camp. The
maximal value is achieved at Vmax. The parameter σ measures the characteristic width
of the graph, that is, τ(Vmax ± σ) = Cbase + Camp/e. The Gaussian description is often
not adequate, so we replace it with other functions whenever appropriate.

Below is the summary of voltage-gated currents whose kinetics were measured ex-
perimentally. The division into persistent and transient is somewhat artificial, since
most “persistent” currents can still inactivate after seconds of prolonged depolarization.
Hyperpolarization-activated currents, such as the h-current or K+ inwardly rectifying
current, are mathematically equivalent to currents that are always activated, but can
be inactivated by depolarization. To avoid possible confusion, we mark these currents
“opened by hyperpolarization”.
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Parameters (Fig.2.20)
Na+ currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Fast transient 1 INa,t = ḡ m3h(V − ENa)

activation −40 15 −38 30 0.46 0.04
inactivation −62 −7 −67 20 7.4 1.2

Fast transient 2 INa,t = ḡ m∞(V )h(V − ENa)

activation −30 5.5 − − − −
inactivation −70 −5.8 τh(V ) = 3 exp((−40 − V )/33)

Fast transient 3 INa,t = ḡ m∞(V )h(V − ENa)

activation −28 6.7 − − − −
inactivation −66 −6 τh(V ) = 4 exp((−30 − V )/29)

Fast persistent 4,a INa,p = ḡ m∞(V )h(V − ENa)

activation −50 4 − − − −
inactivation −49 −10 −66 35 4.5 sec 2 sec

Fast persistent 5,a INa,p = ḡ m∞(V )(0.14 + 0.86h)(V − ENa)

activation −50 6 − − − −
inactivation −56 −7 τh(V ) = 63.2 + 25 exp(−V/25.5)

Fast persistent 2 INa,p = ḡ m(V − ENa)

activation −54 9 − − − 0.8
Fast persistent 6 INa,p = ḡ m(V − ENa)

activation −42 4 − − − 0.8

1. Squid giant axon (Hodgkin and Huxley 1952); see exercise 4.

2. Thalamocortical neurons in rats (Parri and Crunelli 1999).

3. Thalamocortical neurons in cats (Parri and Crunelli 1999).

4. Layer-II principal neurons in entorhinal cortex (Magistretti and Alonso 1999).

5. Large dorsal root ganglion neurons in rats (Baker and Bostock 1997, 1998).

6. Purkinje cells (Kay et al. 1998).

a Very slow inactivation.
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Parameters (Fig.2.20)
K+ currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Delayed rectifier 1 IK = ḡ n4(V − EK)

activation −53 15 −79 50 4.7 1.1

Delayed rectifier 2,4 IK = ḡ mh(V − EK)

activation −3 10 −50 30 47 5
inactivation −51 −12 −50 50 1000 360

M current 3 IK(M) = ḡ m(V − EK)

activation −44 8 −50 25 320 20

Transient 4 IA = ḡ mh(V − EK)

activation −3 20 −71 60 0.92 0.34
inactivation −66 −10 −73 23 50 8

Transient 5 IA = ḡ mh(V − EK)

activation −26 20 − − − −
inactivation −72 −9.6 − − − 15.5

Transient 6 IA = ḡ m4h (V − EK)
Fast component (60% of total conductance)

activation −60 8.5 −58 25 2 0.37
inactivation −78 −6 −78 25 45 19

Slow component (40% of total conductance)
activation −36 20 −58 25 2 0.37
inactivation −78 −6 −78 25 45 19

τh(V ) = 60 when V > −73

Inward rectifier 7 IKir = ḡ h∞(V )(V − EK)
(opened by hyperpolarization )

inactivation −80 −12 − − − < 1

1. Squid giant axon (Hodgkin and Huxley 1952); see exercise 4.
2. Neocortical pyramidal neurons (Bekkers 2000).
3. Rodent neuroblastoma-glioma hybrid cells (Robbins et al. 1992).
4. Neocortical pyramidal neurons (Korngreen and Sakmann 2000).
5. Hippocampal mossy fiber boutons (Geiger and Jonas 2000).
6. Thalamic relay neurons (Huguenard and McCormick 1992).
7. Horizontal cells in catfish retina (Dong and Werblin 1995); AP cell of leech (Wessel et al.

1999); rat locus coeruleus neurons (Williams et al. 1988, V1/2 = EK).
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Parameters (Fig.2.20)
Cation currents Eq. (2.11) Eq. (2.12)

V1/2 k Vmax σ Camp Cbase

Ih current 1 Ih = ḡ h (V − Eh), Eh = −43 mV
(opened by hyperpolarization )

inactivation −75 −5.5 −75 15 1000 100

Ih current 2 Ih = ḡ h (V − Eh), Eh = −1 mV
inact. (soma) −82 −9 −75 20 50 10
inact. (dendrite) −90 −8.5 −75 20 40 10

Ih current 3 Ih = ḡ h (V − Eh), Eh = −21 mV
fast inact. (65%) −67 −12 −75 30 50 20
slow inact. (35%) −58 −9 −65 30 300 100

1. Thalamic relay neurons (McCormick and Pape 1990; Huguenard and McCormick 1992).

2. Hippocampal pyramidal neurons in CA1 (Magee 1998).

3. Entorhinal cortex layer II neurons (Dickson et al. 2000).
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Figure 2.22: Alan Hodgkin (right) and Andrew Huxley (left) in their Plymouth Marine
Lab in 1949. (Photo provided by National Marine Biological Library, Plymouth, UK).

Review of Important Concepts

• Electrical signals in neurons are carried by Na+, Ca2+, K+, and Cl−

ions, which move through membrane channels according to their
electrochemical gradients.

• The membrane potential V is determined by the membrane conduc-
tances gi and corresponding reversal potentials Ei:

C V̇ = I −
∑

i

gi · (V − Ei) .

• Neurons are excitable because the conductances depend on the mem-
brane potential and time.

• The most accepted description of kinetics of voltage-sensitive con-
ductances is the Hodgkin-Huxley gate model.

• Voltage-gated activation of inward Na+ or Ca2+ current depolarizes
(increases) the membrane potential.

• Voltage-gated activation of outward K+ or Cl− current hyperpolar-
izes (decreases) the membrane potential.

• An action potential or spike is a brief regenerative depolarization of
the membrane potential followed by its repolarization and possibly
hyperpolarization, as in Fig.2.16.
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Bibliographical Notes

Our summary of membrane electrophysiology is limited: we present only those con-
cepts that are necessary to understand the Hodgkin-Huxley description of generation
of action potentials. We have omitted such important topics as the Goldman-Hodgkin-
Katz equation, cable theory, dendritic and synaptic function, although some of those
will be introduced later in the book.

The standard textbook on membrane electrophysiology is the second edition of
Ion Channels of Excitable Membranes by B. Hille (2001). An excellent introductory
textbook with an emphasis on the quantitative approach is Foundations of Cellular
Neurophysiology by D. Johnston and S. Wu (1995). A detailed introduction to math-
ematical aspects of cellular biophysics can be found in Mathematical Physiology by
J. Keener and J. Sneyd (1998). The latter two books complement rather than re-
peat each other. Biophysics of Computation by Koch (1999) and chapters 5 and 6 of
Theoretical Neuroscience by Dayan and Abbott (2001) provide a good introduction to
biophysics of excitable membranes.

The first book devoted exclusively to dendrites is Dendrites by Stuart et al. (1999).
It emphasizes the active nature of dendritic dynamics. Arshavsky et al. (1971; Russian
language edition, 1969) make the first, and probably still the best, theoretical attempt
to understand the neurocomputational properties of branching dendritic trees endowed
with voltage-gated channels and capable of generating action potentials. Had they
published their results in the 1990s, they would have been considered classics in the
field. Unfortunately, the computational neuroscience community of the 1970s was
not ready to accept the “heretic” idea that dendrites can fire spikes, that spikes can
propagate backward and forward along the dendritic tree, that EPSPs can be scaled-up
with distance, that individual dendritic branches can perform coincidence detection and
branching points can perform nonlinear summation, and that different and independent
computations can be carried out at different parts of the neuronal dendritic tree. We
touch on some of these issues in chapter 8.

Exercises

1. Determine the Nernst equilibrium potentials for the membrane of the squid giant
axon using the following data:

Inside (mM) Outside (mM)
K+ 430 20
Na+ 50 440
Cl− 65 560

and T = 20◦C.

2. Show that a nonselective cation current

I = ḡNa p (V − ENa) + ḡK p (V − EK)
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corresponding to voltage steps
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can be written in the form (2.7) with

ḡ = ḡNa + ḡK and E =
ḡNaENa + ḡKEK

ḡNa + ḡK

.

3. Show that applying a DC current I in the neuronal model

CV̇ = I − gL(V − EL) − Iother(V )

is equivalent to changing the leak reverse potential EL.

4. Steady-state (in)activation curves and voltage-sensitive time constants can be
approximated by the Boltzmann (2.11) and Gaussian (2.12) functions, respec-
tively, depicted in Fig.2.20. Explain the meaning of the parameters V1/2, k,
Cbase, Camp, Vmax, and σ and find their values that provide satisfactory fit near
the rest state V = 0 for the Hodgkin-Huxley functions depicted in Fig.2.13.

5. (Willms et al. 1999) Consider the curve mp
∞(V ), where m∞(V ) is the Boltzmann

function with parameters V1/2 and k, and p > 1. This curve can be approximated

by another Boltzmann function with some parameters Ṽ1/2 and k̃ (and p = 1).

Find the formulas that relate Ṽ1/2 and k̃ to V1/2, k, and p.

6. (Willms et al. 1999) Write a MATLAB program that determines activation
and inactivation parameters via a simultaneous fitting of current traces from a
voltage-clamp experiment similar to the one in Fig.2.23. Assume that the values
of the voltage pairs – e.g., −60,−10;−100, 0 (mV) – are in the file v.dat. The
values of the current (circles in Fig.2.23) are in the file current.dat, and the
sampling times – e.g., 0, 0.25, 0.5, 1, 1.5, 2, 3, 5 (ms) – are in the file times.dat.

7. Modify the MATLAB program from exercise 6 to handle multi-step (Fig.2.24)
and ramp protocols.

8. [M.S.] Find the best sequence of step potentials that can determine activa-
tion and inactivation parameters (a) in the shortest time, (b) with the highest
precision.
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+50 mV

-10 mV 10 ms

-100 mV
-80 mV
-60 mV
-40 mV
-20 mV Figure 2.24: Multiple voltage steps are of-

ten needed to determine time constants of
inactivation; see exercise 7.

9. [M.S.] Modify the MATLAB program from exercise 6 to handle multiple cur-
rents.

10. [M.S.] Add a PDE solver to the MATLAB program from exercise 6 to simulate
poor space and voltage clamp conditions.

11. [Ph.D.] Introduce numerical optimization into the dynamic clamp protocol to
analyze experimentally in real time the (in)activation parameters of membrane
currents.

12. [Ph.D.] Use new classification of families of channels (Kv3,1, Nav1.2, etc.; see
Hille 2001) to determine the kinetics of each subgroup, and provide a complete
table similar to those in section 2.3.5.


