THE MEMBRANE EQUATION

Any physical or biophysical mechanism instantiating an information processing system that
needs to survive in the real world must obey several constraints: (1) it must operate at high
speeds, (2) it must have a rich repertoire of computational primitives, with the ability to
implement a variety of linear and nonlinear, high-gain, operations, and (3) it must interface
with the physical world—in the sense of being able to represent sensory input patterns
accurately and translate the result of the computations into action, that is motor output
(Keyes, 1985).

The membrane potential is the one physical variable within the nervous system that
fulfills these three requirements: it can vary rapidly over large distances (e.g., an action
potential changes the potential by 100 mV within | msec, propagating up to 1 ¢cm or
more down an axon within that time), and the membrane potential controls a vast number
of nonlinear gates—ionic channels—that provide a very rich substrate for implementing
nonlinear operations. These channels transduce visual, tactile, auditory, and olfactory stimuli
into ¢hanges of the membrane potential, and such vollage changes back into the release of
neurotransmitters or the contraction of muscles.

This is not to deny that ionic fluxes, or chemical interactions of various substances with
each other, are not crucial to the working of the brain. They are, and we will study some
of these mechanisms in Chap. 11. Yet the membrane potential is the incisive variable that
serves as primary vehicle for the neuronal operations underlying rapid computations-—at
the fraction of a second time scale—in the brain.

We will introduce the reader in a very gentle manner to the electrical properties of nerve
cells by starting off with the very simplest of all neuronal models, consisting of nothing more
than a resistance and a capacitance (a so-called RC circuit). Yetendowed with synaptic input,
this model can already implement a critical nonlinear operation, divisive normalization and
gain control.

1.1 Structure of the Passive Neuronal Membrane

As a starting point, we choose a so-called peinr representation of a neuron. Here, the
spatial dependency of the neuron is reduced to a single point or compartment. Such an
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6 « THEMEMBRANE EQUATION

approximation would be valid. for instance, if we were investigating a small, spherical cell
without a significant dendritic tree.

1.1.1 Resting Potential

The first thing we notice once we managed to penetrate into this cell with a wire from
which we can record (termed an intracellular microelectrode) is the existence of an electrical
potential across this membrane. Such experiments, carried out in the late 1930s by Cole
and Curtis (1936) in Woods Hole, Massachusetts, and by Hodgkin and Huxley (1939) on
the other side of the Atlantic, demonstrated that almost always, the membrane potential,
defined as the difference between the intracellular and the extracellular potentials, or

Vm(r) = Vi(” - Ve(r)s (l-”‘

is negative. Here ¢ stands for time. In particular, at rest, all cells, whether ncurons, glia or
muscle cells, have a negative resting potential, symbolized throughout the book as Vi.q.
Depending on the circumstances, it can be as high as —30 mV or as low as —90 mV. Note
that when we say the cell is at “rest,” it is actually in a state of dynamic equilibrium. Ionic
currents are flowing across the membrane, but they balance each other, in such a manner
that the net current flowing across the membrane is zero. Maintaining this equilibrium is a
major power expenditure for the nervous system. Half of the metabolic energy consumed
by a mammalian brain has been estimated to be due to the membrane-bound pumps that
are responsible for the upkeep of the underlying ionic gradients (Ames, 1997).

The origin of Vi lies in the differential distribution of 1ons across the membrane, which
we do not further describe here (see Sec. 4.4 and Hille, 1992). V., need not necessarily
be fixed. Indeed, we will discuss in Sec. 18.3 conditions under which a network of cortical
cells can dynamically adjust their resting potentials.

1.1.2 Membrane Capacity

‘What is the nature of the membranc separating the intracellular cytoplasm from the extra-
cellular milieu (Fig. 1.1)? The two basic constitutive elements of biological membranes,
whether from the nervous system or from nonneuronal tissues such as muscle or red blood
cells, whether prokaryotic or eukaryotic, are proreins and lipids (Gennis, 1989).

The backbone of the membrane is made of two layers of phospholipid molecules, with
their polar heads facing the intracellular cytoplasm and the extracellular space, thereby
separating the internal and external conducting solutions by a 30-50-A-thin insulating
layer. We know that whenever a thin insulator is keeping charges apart, it will act like a
capacitance. The capacitance C is a measure of how much charge @ needs to be distributed
across the membrane in order for a certain potential V,, to build up. Or, conversely, the
membrane potential V,, allows the capacitance to build up a charge @ on both sides of the
membrane, with

O=CYs (1.2)

In membrane biophysics, the capacitance is usually specified in terms of the specific
membrane capacitance C,,, in units of microfarads per square centimeter of membrane area
(uFl/cm?). The actual value of C can be obtained by multiplying C,, by the total membrane
arca. The thickness and the dielectric constant of the bilipid layer determine the numerical
value of C,,. For the simplest type of capacitance formed by two parallel plates, C,, scales
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Fig. 1.1 NATURE OF THE PAsSIVE NEURONAL MEMBRANE (A) Schematic representation of a
small patch of membrane of the types enclosing all cells. The 30-50 A thin bilayer of lipids isolates the
extracellular side from the intracellular one. From an electrical point of view, the resultant separation
of charge across the membrane acts akin to a capacitance. Proteins inserted into the membrane, here
ionic channels, provide a conduit through the membrane. Reprinted by permission from Hille (1992).
(B) Associated lumped electrical circuit for this patch, consisting of a capacitance and a resistance
in series with a battery. The resistance mimics the behavior of voltage-independent ionic channels
inserted throughout the membrane and the battery accounts for the cell’s resting potential V.

inversely with the thickness separating the charges (the thinner the distance between the
two plates, the stronger the mutual attraction of the charges across the insulating material).
As discussed in Appendix A, the specific capacitance per unit area of biological membranes
is between 0.7 and 1 ;F/cm?”. For the sake of convenience, we adopt the latter, simple to
remember, value. This implies that a spherical cell of 5-pm radius with a resting potential
of —70 mV stores about —0.22x 10~"? coulomb of charge just below the membrane and
an equal but opposite amount of charge outside.

When the voltage across the capacitance changes, a current will flow. This capacitive
current, which moves on or off the capacitance. is obtained by differentiating Eq. 1.2 with
respect to time (remember that current is the amount of charge flowing per time),

dVp(l)
I¢ =C 5 (1.3)
For a fixed current, the existence of the membrane capacitance imposes a constraint on how
rapidly V,, can change in response to this current; the larger the capacitance, the slower the
resultant voltage change.

It is important to realize that there is never any actual movement of charge across the
insulating membrane. When the voltage changes with time, the charge changes and a current
will flow, in accordance with Eq. 1.3, but never directly across the capacitance. The charge
merely redistributes itself across the two sides by way of the rest of the circuit.

Can any current flow directly across the bilipid layers? As detailed in Appendix A, the
extremely high resistivity of the lipids prevents passages of any significant amount of charge
across the membrane. Indeed, the specific resistivity of the membrane is approximately one
billion times higher than that of the intracellular cytoplasm. Thus, from an electrical point
of view, the properties of the membrane can be satisfactorily described by a sole element:
a capacitance.
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1.1.3 Membrane Resistance

With no other components around, life would indeed be dull. What endows a large collection
of squishy cells with the ability to move and to think are the all-important proteins embedded
within the membrane. Indeed, they frequently penetrate the membrane, allowing ions to pass
from one side to the other (Fig. 1.1). Protein molecules, making up anywhere from 20 to 80%
(dry weight) of the membrane, subserve an enormous range of specific cellular functions,
including ionic channels, enzymes, pumps, and receptors. They act as doors or gates in the
lipid barrier through which particular information or substances can be transferred from
one side to the other. As we shall sec later on, a great variety of such “gates”™ exists, with
different keys to open them. For now, we are interested in those membrane proteins that act
as ionic channels or pores, enabling ions to travel from one side of the membrane to the
other. We will discuss the molecular nature of these channels in more detail in Chap. 8.

For now, we will summarily describe the current flow through these channels by a simple
linear resistance R. Since we also have 1o account for the resting potential of the cell, the
simplest electrical description of a small piece of membrane includes three elements, C. R,
and V. (Fig. 1.1). Such a circuit describes a passive membrane in contrast to quasi-active
and active membranes, which contain, respectively, linear, inductance-like, and nonlinear
voltage-dependent membrane components. For obvious reasons, it is also sometimes known
as an RC circuit. Fortuitously, the membranes of quite a few cells can be mimicked by such
RC circuits, at least under some limited conditions.

The membrane resistance is usually specified in terms of the specific membrane resis-
tance R,,, cxpressed in terms of resistance times unit area (in units of §2 - cm?). R is
obtained by dividing R, by the area of the membrane being considered. The inverse of R,,
is known as the passive conductance per unit area of dendritic membrane or, for short, as
the specific leak conductance G,, = 1/R,, and is measured in units of siemens per square
centimeter (S/ecm?).

1.2 A Simple RC Circuit

L.et us now carry out a virtual electrophysiological experiment. Assume that we have
identified a small spherical neuron of diameter d and have managed to insert a small
electrode into the cell without breaking it up. Under the conditions of our experiments,
we have reasons to believe that its membrane acts passively. We would like to know what
happens if we inject current Jiy;(¢) through the microelectrode directly into the cell. This
electrode can be thought of as an ideal current source (in contrast to an ideal voltage source,
such as a battery).

How can we describe the dynamics of the membrane potential V,, () in response to this
current? The cell membrane can be conceptualized as being made up from many small
RC circuits (Fig. 1.2A). Because the dimensions of the cell are so small, the electrical
potential across the membrane is everywhere the same and we can neglect any spatial
dependencies; physiologists will say the cell is isopotential. This implies that the electrical
behavior of the cell can be adequately described by a single RC compartment with a current
source (Fig. 1.2B). The net resistance R is determined by the specific membrane resistance
R, divided by the total membrane area wd?> (since the current can flow out through
any one part of the membrane) while the total capacitance C is given by C,, times the
membrane area.
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A) B)

Fig. 1.2 ELECTRICAL STRUCTURE OF A SMALL PassivE NEuroN (A) Equivalent electrical
model of a spherical cell with passive membrane. An intracellular electrode delivers current to the
cell. By convention, an outward current is positive; thus, the arrow. We assume that the dimensions
of the ccll are small enough so that spatial variations in the membranc potential can be neglected.
(B) Under these conditions, the cell can be reduced to a single RC compartment in series with an ideal
current source fiy;.

It is straightforward to describe the dynamics of this circuit by applying Kirchhoff's
current law, which states that the sum of all currents flowing into or out of any electrical
node must be zero (the current cannot disappear, it has to go somewhere). The current across
the capacitance is given by expression 1.3. The current through the resistance is given by
Ohm’s law,

Vm . Vrest

IR=-—-'—E'—'—. “.4]

Note that the potential across the resistance is not equal to Vi, but to the difference between
the membrane potential and the fictive battery V., which accounts for the resting potential.
Due to conservation of current, the capacitive and resistive currents must be equal to the
external one, or

dVpu(t) | Va(t) = View

C o + R = [inj{1) . (1.5)
With t = RC, with units of Q-F = sec, we can rewrite this as
dV, (1
1#{) = —Vu(t) + View + RIi(1) . (1.6)

A minor, but important detail is the sign of the external current (after all, we could have
replaced +[i,; by —1Iip; in Eq. 1.6). By convention, an outward current, that is positive
charge flowing from inside the neuron to the outside, is represented as a positive current.
An outward going current that is delivered through an intracellular electrode will make the
insidc of the cell more positive; the physiologist says that the cell is depolarized. Conversely,
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an inward directed current supplied by the same clectrode, plotted by convention in the
negative direction, will make the inside more negative, that is, it will hyperpolarize the
cell. If the current is not applied from an external source but is generated by a membrane
conductance, the situation is different (see Chap. 5).

Due to the existence of the battery V.. the electrical diagram in Fig. 1.2B does nor,
formally speaking, constitute a passive circuit, since its current-voltage (/-V) relationship
is not restricted to the first and third quadrants of the /-V plane. This implies that
power is needed to maintain this /-V relationship, ultimately supplied by the differential
distributions of ions across the membrane. Because the /-V relationship has a nonzero,
positive derivative for every value of V,,, it is known as an incrementally passive device.
This point is not without interest, since it relates to the stability of circuits built using such
components (Wyatt, 1992). We here do not take a purist point of view, and we will continue
to refer to a membrane whose equivalent circuit diagram is similar to that of Figs. 1.1B and
1.2B as passive.

Equation 1.6 is known as the membrane equation and constitutes a first-order, ordinary
differential equation. With the proper initial conditions, it specifies an unique voltage
trajectory. Let us assume that the membrane potential starts off at V), (1 = 0) = V.
We can replace this into Eq. 1.6 and see that in the absence of any input (fi,; = 0)
this assumption yields dV,,, /dt = 0, that is, once at Vi, the system will remain at
Viest in the absence of any input. This makes perfect sense. So now let us switch on, at
t = 0, a step of current of constant amplitude /. We should remember from the theory of
ordinary differential equations that the most general form of the solution of Eq. 1.6 can be
expressed as

Valt) = vge™''" + (1.7)

where vp and v| depend on the initial conditions. Replacing this into Eq. 1.6 and canceling
identical variables on both sides leaves us with

vy = View + Rlp . (1.8)

We obtain the value of vq by imposing the initial condition V,,(f =0) = vp + vy = Vieg.
Defining the steady-state potential in response to the current as V., = R [, we have solved
for the dynamics of V,, for this cell,

V(1) = Voo (l — & "7} + Vieg; (1.9)

This equation tells us that the time course of the deviation of the membrane potential from
its resting state, that is, V,, (1) — Vi, is an exponential function in time, with a time constant
equal to t. Even though the current changed instantaneously from zero to /o, the membrane
potential cannot follow but plays catch up. This is demonstrated graphically in Fig. 1.3.
How slowly V,,, changes is determined by the product of the membrane resistance and the
capacitance; the larger the capacitance, the larger the current that goes toward charging up
C. Note that 7 is independent of the size of the cell,

7= RC = R,Cp . (1.10)

As we will discuss in considerable detail in later chapters, passive time constants range
from 1 (o 2 msec in neurons that are specialized in processing high-fidelity temporal
information to 100 msec or longer for cortical neurons recorded under slice conditions. A
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typical range for T recorded from cortical pyramidal cells in the living animal’ is between
10 and 20 msec.

Remember the origin of the membrane capacitance in the molecular dimensions of the
bilipid membrane. A thicker membrane would lead to a smaller value for C,, and faster
temporal responses.’

The final voltage level in response to the corrent step is Rl + Vi (from Ohm’s law).
If Iy > 0, the cell will depolarize (that is, V., > Vi), whereas for Iy < 0, the converse
occurs. The resistance R is also termed the input resistance of the cell; the larger R, the
larger the voltage change in response to a fixed current. The input resistance at the cell bodies
of neurons, obtained by dividing the steady-state voltage change by the current causing it,
ranges from a few megaohms for the very large motoneurons in the spinal cord to hundreds
of megaohms for cortical spiny stellate cells or cerebellar granule cells.

1. This is called in vive. Such experiments need to be distinguished from the cases in which a very thin slice is taken from an
animal’s brain, placed in a dish, and perfused with a putrient solution. This would be termed an in vitro experiment.

2. As an aside to the neuromorphic engineers among us designing analog integrated electronic cireuits, C,, = 1 pFlem? is
about 20 times higher than the specific capacitance obtained by sandwiching a thin layer of silicon dioxide between two layers of
poly silicon using a standard 2.0 or 1.2 pum CMOS process (Mead, 1989).
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What happens if, after the membrane potential reaches its steady-state value V., the
current is switched off at time £, ? An analysis similar to the above shows that the membrane
potential returns to V. with an exponential time course; that is,

V(1) = Voo F 0T 4y (1.11)

fort > tyg. (This can be confirmed by placing this solution into Eq. 1.6; see also Fig. 1.3A.)

Now that we know the evolution of the membrane potential for a current step, we would
like to know the solution in the general case of some time-dependent current input [in;(f).
Are we condemned to solve Eq. 1.6 explicitly for every new function fiy;(#) that we use?
Fortunately not; because the RC circuit we have been treating here is a shift-invariant, linear
system, we can do much better.

1.3 AC Circuits as Linear Systems

Linearity is an important property of certain systems that allows us—in combination
with shift invariance—to completely characterize their behavior to any input in terms of
the system's impulse response or Green's function (named after a British mathematician
living at the beginning of the nineteenth century). Since the issuc of linear and nonlinear
systems runs like a thread through this monograph, we urge the reader who has forgotten
these concepts to quickly skim through Appendix B, which summarizes the most rele-
vant points.

1.3.1 Filtering by RC Circuits
Let us compute the voltage response of the RC circuit of Fig. 1.2B in response to a
current impulse §(t). We will simplify matters by only considering the deviation of the
membrane potential from its resting state V.. Here and throughout the book we use
V(t) = V,,(t) — V,eq when we are dealing with the potential relative to rest and reserve
V(1) for the absolute potential. This transforms Eq. 1.6 into

dv(t)

dt

We can transform this equation into Fourier space, where V( /) corresponds to the Fourier
transform of the membrane potential (for a definition, see Appendix B). Remembering that

the dV (t)/dt term metamorphoses into i 27 l?(f)'l;'(P), where i? = —1, we have

V(f) =

T = —V(t) + R&(1). (1.12)

BT (1.13)
A simple way to conceptualize this is to think of the input as a sinusoidal current of
frequency f: Iinj(t) = sin(2m f7). Since the system is linear, it responds by a sinusoidal
change of potential at the same frequency f. but of different amplitude and shifted in time:
V(1) = A(f)sin(2r ft + ¢(f)). The amplitude of the voltage response at this frequency,
termed A(f), is given by

R

0| . N
{ACS)] T O

(1.14)

and its phase by

Koch, Christof. Computational Neuroscience Series : Biophysics of Computation : Information Processing in Single Neurons. Cary, GB: Oxford University Press, USA, 1998. ProQuest ebrary. Web. 1 August 2016.
Copyright © 1998. Oxford University Press, USA. All rights reserved



