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Consistent observations across recording modalities, experiments, and
neural systems find neural field spectra with 1/f-like scaling, eliciting
many alternative theories to explain this universal phenomenon. We
show that a general dynamical system with stochastic drive and minimal
assumptions generates 1/f-like spectra consistent with the range of val-
ues observed in vivo without requiring a specific biological mechanism
or collective critical behavior.

1 Introduction

Transient oscillations are a prominent feature of macroscopic neural field
activity (Buzsaki, 2011) linked to brain function (Buzsaki & Draguhn, 2004)
and dysfunction (Gibbs et al., 2002; Uhlhaas & Singer, 2012). Oscillations
appear as narrowband increases in the spectrum above an aperiodic back-
ground in which the power P decreases proportional to the frequency f
raised to an exponent β: P ∝ f β . Characterizing oscillations while account-
ing for the aperiodic background is important for understanding neural
spectra (Donoghue et al., 2020). Sophisticated methods (Donoghue et al.,
2020; Wen & Liu, 2016; Wilson et al., 2022) support estimation of the 1/f-
like, scale-free (He, 2014) or power-law (Newman, 2005) behavior of neural
field spectra. Changes in β, the aperiodic exponent, have been investigated
in many domains, including sleep (Bódizs et al., 2021; Freeman & Zhai,
2009; Horváth et al., 2022; Lendner et al., 2020), aging (Cesnaite et al., 2023;
Schaworonkow & Voytek, 2021; Voytek et al., 2015), and disease (Lanzone
et al., 2022; Numan et al., 2022; Robertson et al., 2019). While many factors
have an impact on estimation of the aperiodic exponent (e.g., the frequency
range analyzed; (Gerster et al., 2022; Stumpf & Porter, 2012), values of the
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1644 M. Kramer and C. Chu

Table 1: Example Aperiodic Exponents for Human Voltage Spectra Reported in
the Literature.

Recording Experimental
β Reference Modality Frequency Condition

−0.08 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Anesthesia (ketamine)
−1.12 (Lanzone et al., 2022) Scalp EEG (n = 16) 1–40 Hz Eyes closed
−1.3 (Adelhöfer et al., 2021) Scalp EEG (n = 74) 2–40 Hz Behavioral experiments
−1.44 (Adelhöfer et al., 2021) Scalp EEG (n = 74) 2–40 Hz Behavioral experiments
−1.48 (Lanzone et al., 2022) Scalp EEG (n = 18) 1–40 Hz Stroke patients
−1.51 (Robertson et al., 2019) Scalp EEG (n = 78) 4–50 Hz Resting state
−1.67 (Robertson et al., 2019) Scalp EEG (n = 76) 4–50 Hz Resting state
−1.84 (Lendner et al., 2020) Scalp EEG (n = 9) 30–45 Hz Wakefulness
−1.86 (Fransson et al., 2013) Scalp EEG (n = 7) 0.2–30 Hz Sleep
−1.87 (Lendner et al., 2020) Scalp EEG (n = 14) 30–45 Hz Resting state
−2.03 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Wakefulness
−2.07 (Fransson et al., 2013) Scalp EEG (n = 15) 0.2–30 Hz Sleep
−2.32 (Freeman et al., 2000) Intracranial EEG (n = 5) 0.5–150 Hz Resting state
−2.33 (Bódizs et al., 2021) Scalp EEG (n = 175) 2–48 Hz NREM sleep
−2.44 (He et al., 2010) Intracranial EEG (n = 5) 1–100 Hz Wakefulness
−2.48 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Wakefulness
−2.71 (Horváth et al., 2022) Scalp EEG (n = 251) 2–48 Hz NREM sleep
−2.73 (Bódizs et al., 2021) Scalp EEG (n = 175) 2–48 Hz NREM sleep
−2.75 (Lendner et al., 2020) Intracranial EEG (n = 12) 30–45 Hz Wakefulness
−2.87 (He et al., 2010) Intracranial EEG (n = 5) 1–100 Hz Slow wave sleep
−2.99 (Lendner et al., 2020) Intracranial EEG (n = 10) 30–45 Hz Wakefulness
−3.1 (Lendner et al., 2020) Scalp EEG (n = 9) 30–45 Hz Anesthesia
−3.13 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Wakefulness
−3.46 (Lendner et al., 2020) Scalp EEG (n = 14) 30–45 Hz N3 Sleep
−3.59 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Anesthesia (xenon)
−3.67 (Lendner et al., 2020) Scalp EEG (n = 14) 30–45 Hz N2 sleep
−3.69 (Lendner et al., 2020) Intracranial EEG (n = 10) 30–45 Hz N3 sleep
−4 (Miller et al., 2009) Intracranial EEG (n = 20) 80–500 Hz Behavioral experiments
−4.15 (Lendner et al., 2020) Intracranial EEG (n = 10) 30–45 Hz REM sleep
−4.34 (Lendner et al., 2020) Intracranial EEG (n = 12) 30–45 Hz Anesthesia
−4.36 (Colombo et al., 2019) Scalp EEG (n = 5) 20–40 Hz Anesthesia (propofol)
−4.73 (Lendner et al., 2020) Scalp EEG (n = 14) 30–45 Hz REM sleep

Notes: The mean value of the aperiodic exponent (β) reported in the reference listed in the
Reference column. Additional details include recording modality, number of subjects n,
frequency range analyzed, and experimental condition. Considering only studies with
minimum frequencies ≥20 Hz (shaded rows), the aperiodic exponent has mean −3.1,
lower quartile −4, and upper quartile −2.5.

exponent reported at higher frequencies (>20 Hz) typically range between
−4 and −2 (see Table 1).

The universal observation of 1/f-like neural field spectra with a re-
stricted range of aperiodic exponents across different recording modalities,
experiments, and neural systems suggests a common generative mecha-
nism. However, many complex, specific mechanisms have been identified
to generate this phenomenon. These include excitatory/inhibitory balance
(Gao et al., 2017), low-pass frequency filtering by dendrites (Buzsáki et al.,
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A General Mechanism for 1/f-Like Neural Field Spectra 1645

2012) or the extracellular medium (Bédard et al., 2006), nonideal resistive
components in the cell membrane (Bédard & Destexhe, 2008), stochastic fir-
ing of neurons convolved with an exponential relaxation process (Bédard
et al., 2006; Miller et al., 2009; Milstein et al., 2009), stochastic synaptic con-
ductances (Rudolph et al., 2005), stochastically driven damped oscillators
with different relaxation rates (Evertz et al., 2022), local homogeneous con-
nectivity (Jirsa, 2009), combinations of many transient oscillations at differ-
ent frequencies and amplitudes (He et al., 2010), or network mechanisms
linking slower rhythms to broad neuronal recruitment and therefore larger
amplitude field potentials (Buzsáki et al., 2012). Theoretically, scale-free
phenomena, with 1/f-like behavior, have been linked to fractal properties
(Pritchard, 1992), critical transitions (Newman, 2005; O’Byrne & Jerbi, 2022),
and self-organized criticality (Bak et al., 1987; Cocchi et al., 2017). How these
proposed biological and mathematical mechanisms contribute, separately
or combined, to the range of aperiodic exponents observed across diverse
neural field spectra remains unclear.

Here we demonstrate how, in general, a dynamical system with stochas-
tic drive generates 1/f-like behavior at higher frequencies in neural field
spectra. We show that two noise terms, representing correlated and uncor-
related noise inputs, produce the range of aperiodic exponents observed
in vivo. We illustrate these general results in nonlinear models of neu-
ral and nonneural activity to demonstrate the ambiguity in determining
the specific mechanisms given only the observed 1/f-like behavior in the
spectrum. While more complex underlying mechanisms may exist, we in-
stead illustrate how the range of aperiodic exponents observed in vivo
occurs in general for dynamical systems with stochastic drive, without
requiring a specific biological mechanism or tuning to collective critical
behavior.

2 Results

As a general model of neural activity, we consider the n-dimensional dy-
namical system,

dXk

dt
= fk(X1, X2, . . . , Xn) +

m∑
j=1

Bk jεX, j, (2.1)

where, for each k = {1, 2, . . . , n}, Xk is a one-dimensional variable, fk is a
nonlinear function, Bk j is a constant, and εX, j is an independent gaussian
white noise source with mean zero and variance σ 2

X, j. We assume the vari-
able X1 (i.e., k = 1) is an observable quantity (e.g., the voltage recorded in
the EEG or LFP) and all other variables (X2, X3, . . . , Xn) represent n − 1 un-
observed or latent variables affecting the observable dynamics. The unspec-
ified model, equation 2.1, is general and therefore consistent with diverse
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1646 M. Kramer and C. Chu

models of neural activity. To derive the main result from this general model
requires no specific biophysical mechanism. In what follows, we illustrate
these general results by making specific model choices for the variables (Xk)
and functions ( fk).

We assume an equilibrium exists in the noise-free model so that( dX1
dt , dX2

dt , . . . , dXn
dt

) = (0, 0, . . . , 0) at (X1, X2, . . . , Xn) ≡ �X0. Near this equilib-
rium, the dynamics for one variable (Xk) of the nonlinear system 2.1 can be
approximated by the corresponding linear system,

dxk

dt
=

(
∂ fk

∂X1

∣∣∣∣
�X0

)
x1 +

(
∂ fk

∂X2

∣∣∣∣
�X0

)
x2 + · · · +

(
∂ fk

∂Xn

∣∣∣∣
�X0

)
xn +

m∑
j=1

Bk jεX, j, (2.2)

where xk represent small deviations of the variable k from the equilibrium
X0

k ; we evaluate the partial derivatives of the nonlinear function fk at the
equilibrium �X0 (Guckenheimer & Holmes, 1983; Izhikevich, 2007), and we
include the same stochastic perturbations as in the nonlinear system 2.1. We
express the system 2.2 as

d
dt
�x = A�x + B�ε, (2.3)

where �x is the n-by-1 vector of deviations from the equilibrium, �ε is the
m-by-1 vector of independent δ-correlated gaussian white noise sources, A
is the n-by-n Jacobian matrix of the nonlinear system 2.1 evaluated at the
equilibrium, and B is the n-by-m noise matrix,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 . . . B1m

B21 B22 B23 . . . B2m

B31 B32 B33 . . . B3m
...

...
...

. . .
...

Bn1 Bn2 Bn3 . . . Bnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the parameter Bi j determines the contribution of noise source j to
variable i. We assume that A satisfies the conditions required for the linear
system 2.3 to accurately approximate the dynamics of the noise-free nonlin-
ear system 2.1 near the equilibrium (i.e., we assume A has no eigenvalues
with zero real part and the equilibrium is therefore hyperbolic (Gucken-
heimer & Holmes, 1983; Izhikevich, 2007).

For the linear system 2.3, the cross-spectral matrix S[ω] can be obtained
from the expression (Gardiner, 2004; Kleeman, 2011; Thomas & Lindner,
2019),

S[ω] = 1
2π

(A + iωI)−1(B BT )(AT − iωI)−1, (2.4)
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A General Mechanism for 1/f-Like Neural Field Spectra 1647

where A is real, I is the identity matrix, i = √−1, and ω = 2π f is the fre-
quency. Evaluating the asymptotic behavior of the cross-spectral matrix at
high frequencies (ω larger than any frequency associated with a natural
rhythm of the linear system in equation 2.3), the spectrum of the observ-
able variable X1 is

S11[ω] = (B2
11 + B2

12 + · · · + B2
1m)O(ω−2) + O(ω−4), (2.5)

where O(ωk) indicates the limiting behavior of the spectrum as a function
of the kth power of ω as ω → ∞ (see the appendix).

The result in equation 2.5 shows that at high frequencies, the aperiodic
exponent β depends on the relative noise to the observable variable. With-
out stochastic drive to the observable variable X1 (i.e., with B1k = 0 for all k
in {1, 2, . . . , m}),

S11[ω] = O(ω−4),

so that the aperiodic exponent β = −4 at high frequencies (i.e., as ω → ∞).
Alternatively, with stochastic drive to the observable variable X1 (i.e., with
B1k �= 0 for any k in {1, 2, . . . m}),

S11[ω] = O(ω−2),

so that the aperiodic exponent β = −2 at high frequencies (i.e., as ω → ∞).
We note that in this case random walk dynamics dominate the spectrum at
high frequencies, with well-known power-law behavior (Milotti, 2002).

To summarize, we consider a general, n-dimensional nonlinear dynam-
ical system with stochastic drive, equation 2.1. We assume an equilibrium
exists in this system with dynamics well approximated by the linearized
system 2.2. Near this equilibrium, the dynamics produce aperiodic expo-
nents between −4 and −2 at high frequencies (i.e., frequencies beyond the
natural frequencies or spectral peaks of the system) consistent with the
range of values observed in vivo. The value of the aperiodic exponent de-
pends on the noise in the observed and latent variables; when noise in
the observable variable X1 dominates, the aperiodic exponent ≈ −2, while
when the noise in the latent variables dominates, the aperiodic exponent
≈ −4.

The main result (see equation 2.5) and implications for the aperiodic ex-
ponent (−4 ≤ β ≤ −2) are for the general model, equation 2.1. These gen-
eral results do not require a specific biophysical model of neural activity.
In what follows, we illustrate the generality of these results in four exam-
ple models, in which we choose the nonlinear functions fk in model 2.1 and
assume a square diagonal noise matrix B to simplify the presentation of nu-
merical simulation results. In doing so, we show that each model produces
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1648 M. Kramer and C. Chu

aperiodic exponents consistent with in vivo data (−4 ≤ β ≤ −2) but with
different physical interpretations.

2.1 A Reduced Model of Single Neuron Activity. We first consider a re-
duced Hodgkin-Huxley type model (Hodgkin & Huxley, 1952; Izhikevich,
2007) to simulate the subthreshold dynamics of a single neuron. The model
equations describe the dynamics of an observable voltage (V ) and a latent
membrane current (M),

dV
dt

= I0 + gMM(EM − V ) + εV ,

dM
dt

= αM[V](1 − M) − βM[V]M + εM. (2.6)

In the first equation, three terms drive the voltage dynamics: a constant in-
put current (I0), a dynamic membrane current (gMM(EM − V )), and voltage
noise (εV , gaussian distributed with mean 0 and variance σ 2

V ). In the second
equation, the dynamics of the latent membrane current depend on forward
(αM[V]) and backward (βM[V]) rate functions,

αM[V] = 0.02
1 + exp

(−V−20
5

) ,

βM[V] = 0.01 exp
(−V − 43

18

)
.

We choose these functions to simulate a muscarinic receptor suppressed
potassium current (M-current; see Table A2 of Traub et al., 2003; see also
Kopell et al., 2011, and Kramer, Roopun, et al., 2008). We omit other mem-
brane currents (e.g., fast sodium and potassium currents) to focus on the
subthreshold membrane dynamics without action potential generation. A
stochastic drive also affects the membrane current dynamics (εM, gaussian
distributed with mean 0 and variance σ 2

M).
Choosing the model parameters I0 = 1, gM = 4, and EM = −95, we find

an equilibrium of the noise-free model, equation 2.6, at

(V0, M0) ≈ (−48.15, 0.00534).

The noise-driven linearized system near this equilibrium is approximately

dV
dt

= −0.0213V − 187.38 M + εV ,

dM
dt

= 0.0000181V − 0.0134 M + εM,

and the equilibrium is hyperbolic with eigenvalues −0.0174 ± 0.0581 i.
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A General Mechanism for 1/f-Like Neural Field Spectra 1649

Figure 1: In a reduced model of single neuron activity, the aperiodic exponent
increases from approximately −4 to −2 with the voltage noise. (A, B) Example
voltage time series when (A) the voltage noise is 0 (εV = 0), or (B) the voltage
noise is nonzero (σV = 20). (C, D) The corresponding spectra (black) and lin-
ear fits (red, 50 Hz to 250 Hz) for the time series in panels A and B. (E) Esti-
mates of the aperiodic exponent for increasing values of voltage noise. Black
(red) indicates mean (standard deviation) of estimates across 100 simulations.
In all simulations, the current noise (σM = 0.01) is fixed, and numerical integra-
tion is performed using the Euler–Maruyama method with time step 0.01 ms.
Code to simulate the model and create this figure is available at https://github
.com/Mark-Kramer/Aperiodic-Exponent-Model.

Consistent with the general theory, we expect this nonlinear Hodgkin-
Huxley type model 2.6 to produce spectra with aperiodic exponents −4 ≤
β ≤ −2, depending on the values of the stochastic drives (εV , εM). To
show this, we simulate the Hodgkin-Huxley type model, equation 2.6,
and estimate the spectrum of the voltage variable V with fixed current
noise (σM = 0.01) and variable voltage noise (0 ≤ σV ≤ 30). In agreement
with the general theory (see Figure 1), as the voltage noise increases, the
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1650 M. Kramer and C. Chu

aperiodic exponent increases from near β ≈ −4 when σV = 0 to β ≈ −2
when σV = 30.

We conclude that this nonlinear model of single neuron subthreshold
dynamics, equation 2.6, produces aperiodic exponents consistent with the
range of values observed in vivo. In agreement with the general theory, the
value of the aperiodic exponent depends on the relative noise in the ob-
servable voltage variable and latent current variable. In this case, when
noise in the membrane current dominates, the aperiodic exponent ap-
proaches −4; when noise in the voltage dominates, the aperiodic exponent
approaches −2.

2.2 A Two-Dimensional Model of Neural Population Activity. We
now consider the Wilson-Cowan equations as a model of neural population
activity (Wilson & Cowan, 1972). The equations describe the interacting dy-
namics of an excitatory (E) and inhibitory (I) neural population,

τe
dE
dt

= −E + (ke − reE) Se[c1E − c2I + P] + εE,

τi
dI
dt

= −I + (ki − riI) Si[c3E − c4I + Q] + εI, (2.7)

where S is the sigmoid function,

Sk[x] = 1
1 + exp(−ak(x − θk))

− 1
1 + exp(ak θk)

,

and εE and εI are noise terms (gaussian distributed with mean 0 and
variances σ 2

E and σ 2
I , respectively). We choose the parameters to produce

damped oscillatory behavior (see Figure 10 in Wilson & Cowan, 1972, and
the caption of Figure 2 for the parameter values used here). With these pa-
rameters, we find an equilibrium of the noise-free model, equation 2.7,

(E0, I0) ≈ (0.1511, 0.1585).

The noise-driven linearized system near this equilibrium is approximately

dE
dt

= 1.482 E − 2.660 Ī + εE,

dĪ
dt

= 3.963 E − 1.981 Ī + εI,

and the equilibrium is hyperbolic, with eigenvalues −0.250 ± 2.75 i.
According to the general theory, we expect the nonlinear system, equa-

tion 2.7, near the equilibrium (E0, I0) to produce spectra with aperiodic
exponents −4 ≤ β ≤ −2, depending on the values of the stochastic drives
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A General Mechanism for 1/f-Like Neural Field Spectra 1651

Figure 2: In a two-dimensional model of neural population activity, the aperi-
odic exponent increases from approximately −4 to −2 with the excitatory noise.
(A, B) Example excitatory population time series when (A) the excitatory noise
is 0 (εE = 0), or (B) the excitatory noise is nonzero (σE = 0.2). (C, D) The corre-
sponding spectra (black) and linear fits (red, 20–250 Hz) for the time series in
panels A and B. (E) Estimates of the aperiodic exponent for increasing values
of excitatory noise. Black (red) indicates mean (standard deviation) of estimates
across 100 simulations. In all simulations, the inhibitory noise (σI = 0.1) is fixed.
We use these model parameters: c1 = 15, c2 = 15, c3 = 15, c4 = 7, ae = 1, θe = 2,
ai = 2, θi = 2.5, τe = 50, τi = 50, re = 1, ri = 1, ke = 1, ki = 1, P = 1.25, Q = 0. We
perform numerical integration using the Euler–Maruyama method with time
step 0.1 ms. Code to simulate the model and create this figure is available at
https://github.com/Mark-Kramer/Aperiodic-Exponent-Model.

(εE, εI ). To show this, we simulate the nonlinear system 2.7 and estimate the
spectrum of the excitatory variable E with fixed inhibitory noise (σI = 0.1)
and variable excitatory noise (0 ≤ σ E ≤ 0.3). In agreement with the general
theory (see Figure 2), as the excitatory noise increases, the aperiodic expo-
nent increases from near β ≈ −4 when σE = 0 to β ≈ −2 when σE = 0.3.
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1652 M. Kramer and C. Chu

We conclude that this nonlinear model of neural population activity,
equation 2.7, produces aperiodic exponents consistent with the range of val-
ues observed in vivo. In this model, the value of the aperiodic exponent de-
pends on the relative noise in the observable variable E and latent variable
I. When noise in the inhibitory population dominates, the aperiodic expo-
nent approaches −4; when noise in the excitatory population dominates,
the aperiodic exponent approaches −2.

2.3 A 10-Dimensional Model of Neural Population Activity. To illus-
trate an application of the main result, equation 2.5, to a higher-dimensional
neural model, we consider a mean-field model of neural population activity
consisting of the coupled differential equations:

τk
dhk

dt
= (hrest

k − hk) + ψek[he]Iek + ψik[hi]Iik

(
d
dt

+ γk

)2

Ikl = (Nβ

klSk[hk] + Pkl )Gk γk e, (2.8)

where k = {e, i} and l = {e, i} denote excitatory (e) and inhibitory (i) neu-
ral populations, ψkl are normalized weighting functions, and Sk[hk] are
sigmoidal transfer functions (Steyn-Ross et al., 2003). The model variables
simulate the macrocolumn-averaged transmembrane soma voltage of an
excitatory (he) and inhibitory (hi) neural population, and synaptic input (Ikl)
from population k to population l. Expressing the second-order differential
equations for the synaptic inputs Ikl as first-order differential equations re-
sults in a system of 10 coupled first-order differential equations. The vari-
able he is observable (Steyn-Ross et al., 1999) and the other variables are
latent. We include independent stochastic drive to the dynamics of the ob-
servable variable (mean 0 and variance σ 2

he
) and each latent variable (mean

and variance σ 2
L to all latent variables). Applications of the model include

simulating electroencephalogram (EEG) dynamics during sleep (D. Steyn-
Ross et al., 2005; Steyn-Ross et al., 2005; Wilson, Steyn-Ross, et al., 2006)
seizures (Kramer et al., 2005, 2007; Steyn-Ross et al., 2012; Wilson, Sleigh,
et al., 2006), and anesthesia (Steyn-Ross et al., 1999, 2003).

Fixing all model parameters to the default values in Steyn-Ross et al.
(2003), a stable equilibrium exists (Steyn-Ross et al., 2003). We therefore
expect, consistent with the general theory, model 2.8, to produce spectra
with aperiodic exponents −4 ≤ β ≤ −2, depending on the values of the
stochastic drives. To show this, we simulate the model 2.8 and estimate the
spectrum of the voltage variable he with fixed noise (σL = 50) to all latent
variables and variable noise to the observable variable (he, 0 ≤ σ he ≤ 1). In
agreement with the general theory (see Figure 3), as the noise to the exci-
tatory neural population increases, the aperiodic exponent increases from
near β ≈ −4 when σhe = 0 to β ≈ −2 when σhe = 1.
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A General Mechanism for 1/f-Like Neural Field Spectra 1653

Figure 3: In a 10-dimensional model of neural population activity, the aperi-
odic exponent increases from approximately −4 to −2 with increasing noise
to the excitatory neural population. (A, B) Example excitatory neural popula-
tion activity when (A) noise to the excitatory neural population is 0 (εhe = 0) or
(B) nonzero (σhe = 1). (C, D) The corresponding spectra (black) and linear fits
(red, 50 Hz–1000 Hz) for the time series in panels A and B. (E) Estimates of the
aperiodic exponent for increasing values of excitatory neural population noise.
Black (red) indicates mean (standard deviation) of estimates across 100 simu-
lations. In all simulations, the latent noise terms (σL = 50) are fixed and nu-
merical integration performed using the Euler–Maruyama method with time
step 0.1 ms. Code to simulate the model and create this figure is available at
https://github.com/Mark-Kramer/Aperiodic-Exponent-Model.

We conclude that this high-dimensional (10th order) nonlinear model of
macroscopic neural population activity, equation 2.8, produces aperiodic
exponents consistent with the range of values observed in vivo. In agree-
ment with the general theory, the value of the aperiodic exponent depends
on the relative noise in the observable variable (he) and latent variables.
In this case, when noise outside the excitatory population dominates, the
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aperiodic exponent approaches −4; when noise in the excitatory popula-
tion (he) dominates, the aperiodic exponent approaches −2.

2.4 A Model of Predator-Prey Interactions. To illustrate the generality
of the main result, equation 2.5, beyond models of neural activity we con-
sider a nonlinear model of predator-prey interactions,

dx
dt

= x(γ − x)
γ

− x y + εx,

dy
dt

= −α y + x y + εy, (2.9)

where x and y represent prey and predator populations, respectively, and
the prey population includes self-regulation; (α, γ ) are positive constants;
and εx and εy are noise terms (gaussian distributed with mean 0 and vari-
ances σ 2

X and σ 2
Y , respectively; Edelstein-Keshet, 2005). The nontrivial equi-

librium of the deterministic system is

(x0, y0) =
(

α, 1 − α

γ

)
,

and we require γ > α so that the equilibrium predator population is posi-
tive. The linearized system near this equilibrium is

d
dt

(
x̄

ȳ

)
= A

(
x̄

ȳ

)
+

(
εx

εy

)
,

where A =
( − α

γ
−α

1 − α
γ

0

)
. Because the trace of A = − α

γ
is negative, and the

determinant of A = αy0 is positive, the equilibrium is stable and hyperbolic
(Edelstein-Keshet, 2005).

Consistent with the general theory, we expect this predator-prey model,
equation 2.9, to produce spectra with aperiodic exponents −4 ≤ β ≤ −2,
depending on the values of the stochastic drives (εx, εy). To show this, we
simulate the predator-prey model, equation 2.9, over a range of parameters
(α, γ ) and estimate the spectrum of the prey variable x with fixed predator
noise (σy = 1) and variable prey noise (0 ≤ σ x ≤ 0.005). In agreement with
the general theory, the values of the aperiodic exponent in this nonneural
model lie within the range −4 ≤ β ≤ −2, depending on the relative noise in
the prey variable (see Figure 4). As the prey noise increases, the aperiodic
exponent increases from near β ≈ −4 when σx = 0 to β ≈ −2 when σx =
0.005 across a range of model parameters (α, γ ).
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Figure 4: In a predator-prey population model, the aperiodic exponent in-
creases from approximately −4 to −2 with the prey noise. (A, B) Example prey
population dynamics when (A) the prey noise is 0 (εx = 0) or (B) the prey
noise is nonzero (σx = 0.01). (C, D) The corresponding spectra (black) and lin-
ear fits (red, 50–250 Hz) for the time series in panels A and B. (E) Estimates
of the aperiodic exponent for increasing values of prey noise. Black (color) in-
dicates mean (standard deviation) of estimates across 100 simulations. In all
simulations, the predator noise (σy = 1) is fixed, and the model simulated for
250,000 steps with numerical integration performed using the Euler–Maruyama
method with time step 0.0002 a.u; to avoid an initial large amplitude tran-
sient, we omit the first 50,000 steps of simulated data from analysis. In panels
A to D, the parameters are α = 0.25, γ = 0.6. In panel E, colors indicate simu-
lations at α = {0.0, 0.1, . . . , 0.5}. For each fixed α, we simulate 10 instances of
the model at 10 different values of γ = {0.1, 0.2, 0.3, . . . , 1.0} for a total of 100
simulations. Code to simulate the model and create this figure is available at
https://github.com/Mark-Kramer/Aperiodic-Exponent-Model.

We note that, mathematically, three of the four models are essentially the
same; the Hodgkin-Huxley type model, equation 2.6; the two-dimensional
neural population model, equation 2.7; and the predator-prey model,
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equation 2.9, are all planar models with independent additive noise in the
two variables. We choose to illustrate the theory with these example simula-
tions to demonstrate the difficulty of interpreting the biological mechanism
producing the aperiodic exponent. While the four models, equations 2.6
to 2.9, simulate different neural and nonneural dynamics, each model pro-
duces 1/f-like scaling with aperiodic exponents consistent with in vivo ob-
servations of neural activity. The interpretation of the mechanism affecting
the aperiodic exponent depends on the model choice; the aperiodic expo-
nent β approaches −2 with increasing voltage noise in equation 2.6, noise
to an excitatory neural population in equations 2.7 and 2.8, or prey noise
in equation 2.9. Because each model satisfies the general conditions (i.e., a
hyperbolic equilibrium exists), the spectral results derived for the general
model in equation 2.5 capture the 1/f-like spectrum for each specific, bio-
physical model considered here.

3 Discussion

A universal feature of neural field potential spectra is 1/f-like scaling at
high frequencies. To produce this power law, many generative mechanisms
have been proposed with diverse biological implementations and inter-
pretations. Here, we do not propose that a specific biological mechanism
produces 1/f-like scaling. Instead, to understand how different neural
mechanisms can produce similar 1/f-like scaling, we consider a general
nonlinear dynamical system with stochastic drive. We show that dynamics
near a (hyperbolic) equilibrium in this general model of neural activity pro-
duce aperiodic exponents between −4 and −2, consistent with the range of
values reported in vivo for higher frequencies (e.g., >20 Hz). We illustrate
these results in neural and nonneural models. We propose that the range
of aperiodic exponents observed across recording modalities, experiments,
and neural systems is a natural consequence of a noise-driven dynamical
system.

We considered here a single statistic, the aperiodic exponent, reflecting
the 1/f-like feature of the neural field spectrum. We note that many dif-
ferent models can explain the same observed statistic. For example, obser-
vations from neural systems can produce spectra with broadband peaks
in the gamma band (approximately 30–80 Hz; Fries et al., 2007). Many
approaches exist to explain these observed spectral peaks, including sta-
tistical approaches (e.g., an autoregressive model of order two; Spyropou-
los et al., 2020), mechanical approaches (e.g., a damped driven oscillator;
Spyropoulos et al., 2020), or biophysical approaches (e.g., the interneuron
network model, or the pyramidal-interneuron network model; Whitting-
ton et al., 2000). Our understanding of the gamma rhythm in a particular
experiment depends on the model choice. In the same way, observa-
tions from neural systems produce spectra with 1/f-like scaling at high
frequencies, and many models exist to explain this scaling. Our results show
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mathematically why many models can produce the range of aperiodic ex-
ponents observed in vivo (−4 ≤ β ≤ −2). Due to the general nature of this
mathematical result, it is not surprising that many different proposals exist
to explain the 1/f-like spectrum. In practice, we expect that biological mech-
anisms must exist to create the scaling observed in vivo. Identifying these
biological mechanisms and their expression in the diverse observations of
1/f-like scaling reported remains an important challenge.

Our results are consistent with previous work showing that power-
law scaling occurs in simple stochastic or physical systems. For example,
Gao et al. (2017) relate estimates of the aperiodic exponent to changes in
the balance between excitation and inhibition. To do so, they simulate the
local field potential as the summed synaptic current generated by inde-
pendent stochastic spiking excitatory and inhibitory cells. Bédard et al.
(2006) propose that 1/f-like scaling in the spectrum does not rely on crit-
ical states but instead depends on the filtering properties of the extracellu-
lar medium (although this mechanism remains debated; Logothetis et al.,
2007). Touboul and Destexhe (2010) show that simple models of stochas-
tic processes (high-frequency shot-noise processes or Ornstein-Uhlenbeck
processes) produce peak-amplitude distributions consistent with power-
law distributions. Priesemann and Shriki (2018) show that inhomogeneous
Poisson processes can produce approximate power law distributions in the
size and duration distributions of avalanches (i.e., activity cascades). Con-
sistent with our results, these examples generate power-law scaling without
requiring a sophisticated biological or mathematical mechanism. Distinct
from these previous works, we consider an (unspecified) n-dimensional dy-
namical system and show that, near a (hyperbolic) equilibrium, stochas-
tic drive produces aperiodic exponents consistent with values observed in
vivo.

Under the general framework considered here, the range of aperiodic
exponents reflects different types of noise. The observable dynamics (e.g.,
variable X1 in equation 2.1) depend directly on the stochastic drives to the
observable variable, and indirectly on the stochastic drives to the latent vari-
able(s). The latent dynamics introduce correlations in the uncorrelated la-
tent noise process before this noise reaches the observable dynamics. There-
fore, the observable dynamics depend on both uncorrelated and correlated
noise inputs, and we may interpret the aperiodic exponent in terms of these
different types of noise; an aperiodic exponent near β = −4 indicates that
correlated noise inputs dominate the high-frequency observable dynam-
ics, while β = −2 indicates that uncorrelated noise dominates the high-
frequency observable dynamics. These general results are independent of
a specific biophysical mechanism, and a biophysical interpretation of the
relationship between different types of noise and the aperiodic exponent
depends on the specific model choice.

Some observations report aperiodic exponents greater than −2 (i.e., β >

−2), beyond the range of aperiodic exponents derived here. Experimental
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factors, such as measurement noise, which flattens the spectrum and shifts
β toward 0, might contribute to these observations. In addition, analysis
factors may affect reported results. For example, the frequency range con-
sidered varies widely across studies (see the discussion of fitting ranges
in Gerster et al., 2022). In general, larger aperiodic exponents (more nega-
tive β) occur at higher frequencies (Bédard et al., 2006; Colombo et al., 2019;
Ibarra Chaoul & Siegel, 2021; Racz et al., 2021), although not always (Chaud-
huri et al., 2018). In the framework considered here, the result −4 ≤ β ≤ −2
holds in the high-frequency limit (when the measured frequency exceeds
any natural frequency of the neural population) and near an equilibrium
of the dynamical system. In lower-frequency bands (e.g., below the nat-
ural frequency), our simplifying asymptotic arguments no longer apply,
and the relationship between power and frequency will depend on the
model parameters. In addition, we note that the aperiodic exponent re-
ported in lower-frequency bands is more difficult to interpret. To assess
low-frequency rhythms requires long durations of data, which increases the
chance of nonstationarity. Artifacts (e.g., slow drifts) and analysis choices
(e.g., whether to subtract the signal mean) also affect the low-frequency
power. Finally, while power-law features at low frequencies may reflect the
same power-law features at high frequencies, these different phenomena
unlikely reflect the same neural mechanisms. We also expect analyzing dy-
namics away from an equilibrium of the dynamical system will increase
the aperiodic exponent. Away from an equilibrium, nonlinear terms in the
model have a greater impact on the dynamics and the resulting spectrum.
These nonlinearities may increase power at high frequencies (e.g., Kramer
et al., 2008) and therefore increase the aperiodic exponent beyond the range
derived for the linear dynamics near the equilibrium.

Here we considered additive gaussian noise as the stochastic inputs
to the dynamical models. However, alternative noise sources would pro-
vide more accurate approximations of biological systems. For example,
for conductance-based neural models, more biophysically plausible noise
sources would include noise in the membrane current dynamics with vari-
ance proportional to the opening and closing rates of ion channels (Pu &
Thomas, 2020, 2021). For models of neural population activity, stochastic
perturbations may be scaled by the square root of the population size (Be-
nayoun et al., 2010; Candia et al., 2021). For models of ecological population
dynamics, noise may be scaled proportional to the birth and death rates
(Barendregt & Thomas, 2023; Huynh et al., 2023; Strang et al., 2019). Un-
derstanding the impact of more biologically realistic noise (e.g., state-
dependent noise) on the power-law behavior remains an important topic
for future investigation.

Many well-supported observations of power laws appear in neuro-
science, including avalanches of population voltage discharges (Beggs
& Plenz, 2003) and amplitudes of narrowband oscillations (Linkenkaer-
Hansen et al., 2001). Here, we consider one type of power law: the 1/f-like
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neural field spectrum and a general, noise-driven dynamical system. Under
this general model, the aperiodic exponent represents the impact of noise in
the observable and latent dynamics, without requiring a sophisticated bi-
ological or dynamical mechanism. We propose that the range of aperiodic
exponents −4 ≤ β ≤ −2 observed in vivo represents the expected dynam-
ics near an equilibrium in a nonlinear dynamical system driven by noise.
The generality of the model is consistent with the universality of 1/f-like
field spectra, reflecting a basic dynamical feature present in many different
neural systems. However, this simplicity may also limit the computational
utility of this mechanism and the role of the aperiodic exponent in measur-
ing neural computations.

4 Materials and Methods

To estimate the aperiodic exponent β, we first compute the spectrum in the
standard way. To a simulated voltage time series (Vt ) with sampling interval
� and duration T, we subtract the mean, apply a Hanning taper, compute
the Fourier transform (Vf ), and multiply by the complex conjugate (V∗

f ):

P = 2�2

T
VfV∗

f .

We note that the square of the Fourier coefficients is essential for consis-
tent interpretation of the aperiodic exponent across studies; omitting the
square is a common mistake identified in previous work (see the discussion
in Milotti, 2002). For frequencies f , we fit a linear model to the logarithm
base 10 of the spectrum (log10 P) with predictor logarithm base 10 of the
frequency (log10 f ),

log10 P = c + β log10 f,

where β is the estimate of the aperiodic exponent. Code to compute the
spectrum and estimate the aperiodic exponent is available at https://
github.com/Mark-Kramer/Aperiodic-Exponent-Model.

Appendix: Derivation of the Asymptotic Behavior of the Cross-Spectral
Matrix

Consider the two terms of equation 2.4 that involve the Jacobian,

(A + iωI)−1 and (AT − iωI)−1.

In general, these n-by-n matrices are complicated expressions of the con-
stants in A and powers of ω. To characterize the limiting behavior of these
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matrices for large values of ω, we express each of these two terms using
asymptotic notation,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(ω−1) O(ω−2) O(ω−2) · · · O(ω−2)

O(ω−2) O(ω−1) O(ω−2) · · · O(ω−2)

O(ω−2) O(ω−2) O(ω−1) · · · O(ω−2)
...

...
...

. . .
...

O(ω−2) O(ω−2) O(ω−2) · · · O(ω−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where terms on the diagonal grow proportional to ω−1 and terms off the
diagonal grow proportional to ω−2 as ω → ∞. The noise matrix B enters
the calculation only as a symmetric matrix D,

D = B BT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 . . . D1n

D12 D22 D23 . . . D2n

D13 D23 D33 . . . D3n
...

...
...

. . .
...

D1n D2n D3n . . . Dnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and we note D11 = B2
11 + B2

12 + . . . + B2
1m, the sum of each squared element

in the first row of B. The first row of

(A + iωI)−1D

then becomes

[D11O(ω−1) + (D12 + D13 + · · · + D1n)O(ω−2),

D12O(ω−1) + (D22 + D23 + · · · + D2n)O(ω−2),

D13O(ω−1) + (D23 + D33 + · · · + D3n)O(ω−2),
...

D1nO(ω−1) + (D2n + D3n + · · · + Dnn)O(ω−2)].

To determine the spectrum of the observable variable (S11[ω]), we compute
the first entry of the cross-spectral matrix S[ω] in equation 2.4,

(A + iωI)−1D (AT − iωI)
−1

,

which corresponds to multiplying the two vectors,
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[D11O(ω−1) + (D12 + D13 + · · · + D1n)O(ω−2),

D12O(ω−1) + (D22 + D23 + · · · + D2n)O(ω−2),

D13O(ω−1) + (D23 + D33 + · · · + D3n)O(ω−2),
...

D1nO(ω−1) + (D2n + D3n + · · · + Dnn)O(ω−2)]

and

[O(ω−1),

O(ω−2),

O(ω−2),
...

O(ω−2)]

element by element. Doing so, we find,

S11[ω] = D11O(ω−2) + O(ω−4),

or

S11[ω] = (B2
11 + B2

12 + · · · + B2
1m)O(ω−2) + O(ω−4), (A.1)

where we note that the O(ω−3) terms vanish due to the symmetry of D.
To illustrate these general results, we consider a two-dimensional dy-

namical system with

A =
(

a b

c d

)
and B =

(
B11 B12

B21 B22

)
.

Evaluating the cross-spectral matrix, equation 2.4, for the observable vari-
able (SXX[ω]), we find

SXX[ω] = 1
2 π

b2(B2
21 + B2

22) − 2 b d(B11B21 + B12B22) + (B2
11 + B2

12)(d2 + ω2)
(b c − a d)2 + (a2 + 2 b c + d2)ω2 + ω4 .

(A.2)

Isolating the ω2 term in the numerator, this expression becomes,

SXX[ω] = O(1) + (B2
11 + B2

12)O(ω2)
O(ω4)

= (B2
11 + B2

12)O(ω−2) + O(ω−4)

as ω → ∞, equivalent to the general expression A.1.
To illustrate the cross-spectral matrix SXX[ω] for a specific two-

dimensional dynamical system, we consider the predator-prey model,
equation 2.9. In this case, B11 = σx, B12 = B21 = 0, and B22 = σy = 1, so that
equation A.2 becomes

SXX[ω] = 1
2 π

b2 + σ 2
x (d2 + ω2)

(b c − a d)2 + (a2 + 2 b c + d2)ω2 + ω4 .
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1662 M. Kramer and C. Chu

Figure 5: Analytic and estimated spectra for the predator-prey model. (A) The
analytic spectrum, equation A.3, for the prey variable at different values of prey
noise (σx, see legend). When prey noise is 0, the aperiodic exponent is −4 at
high frequencies (red curve). As the prey noise increases, a knee appears in the
curve, and the aperiodic exponent becomes −2 at high frequencies. (B) Spec-
tra estimated from numerical simulations of the predator-prey model at the
same values of prey noise (σx; see the legend). The shift to an aperiodic expo-
nent of −2 at high frequencies becomes difficult to detect. For all curves, we
fix α = 0.25, γ = 0.6, and σy = 1 and perform numerical integration using the
Euler–Maruyama method with time step 0.0002 a.u. Code to create this figure is
available at https://github.com/Mark-Kramer/Aperiodic-Exponent-Model.

Fixing α = 0.25 and γ = 0.6 as in Figures 4A to 4D, we find

a = −0.25
0.6

, b = −0.25, c = 1 − 0.25
0.6

, d = 0,

so that the cross-spectrum for the observable (prey) variable becomes

SXX[ω] = 1
2 π

(
σ 2

x ω2

0.0212674 − 0.118056 ω2 + ω4

+ 0.0625
0.0212674 − 0.118056 ω2 + ω4

)
. (A.3)

We show in Figure 5A this cross-spectrum for different values of prey
noise (σx). When σx = 0, the first term in equation A.3 is zero and the ω−4

term dominates the spectrum (red curve in Figure 5A). When σx increases
to 0.001, the first term in equation A.3 becomes nonzero and the ω−2 term
affects the spectrum. However, because σx is small, the effect of the ω−2 term
appears only at large ω, where the second term of SXX[ω] in equation A.3
is small (green curve in Figure 5A). As σx increases, the impact of the first
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(ω−2) term increases and emerges above the second (ω−4) term at lower fre-
quencies (orange and blue curves in Figure 5A). A knee in the curve occurs
at the transition from ω−4 behavior (at lower frequencies) to ω−2 behavior
(at higher frequencies). We note that estimating a single aperiodic exponent
over the high-frequency range produces a single estimate for the slope of
SXX[ω]; a more representative approach would instead identify the knee in
the curve and estimate the two separate slopes. However, in practice, noisy
spectral estimates from time series data obfuscate this change in aperiodic
exponent (see the examples in Figure 5B).
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