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Analysis of Rhythmic Activity in the Scalp

Electroencephalogram

Synopsis

Data Field data: 2 s of scalp EEG data sampled at 1000 Hz.

Goal Characterize the observed rhythms in these data.

Tools Fourier transform, power spectral density, spectrogram.

3.1 Introduction

3.1.1 Background

In this chapter, we again consider data recorded in the scalp EEG. The EEG provides a mea-
sure of brain voltage activity with high temporal resolution (typically on the order of mil-
liseconds) but poor spatial resolution (on the order of 10 cm2 of cortex). Here we consider
EEG activity recorded from a single scalp electrode. We analyze these data to determine
what (if any) rhythmic activity is present. We explain an important technique to character-
ize rhythms in data—the Fourier transform and power spectral density, or spectrum—and
the many subtleties associated with this technique.

3.1.2 Case Study Data

A patient enters the Massachusetts General Hospital (MGH) emergency room unconscious.
As part of his clinical workup, electrodes are placed on the scalp surface and the EEG
recorded. We assume that the skilled technicians at MGH record the EEG data with no
artifacts (i.e., correctly placed electrodes in good electrical contact with the scalp). Twenty-
one electrodes simultaneously record the EEG data for 10 minutes sampled at 1000 Hz (i.e.,
1,000 samples per second). To start, we receive from our clinical collaborator a 2 s segment
of EEG data recorded from a single electrode. If we find anything interesting in this 2 s
segment, our clinical collaborator has promised to provide additional EEG data from this
patient and others.
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3.1.3 Goal

Our goal is to analyze the 2 s of EEG data by characterizing the observed activity. There are
many ways to do so, and we focus on developing techniques to characterize the observed
rhythms. By the end of this chapter, you should be familiar with the principles of the
Fourier transform, how to compute the spectrum in MATLAB, and the time-windowed
spectrum.

3.1.4 Tools

The primary tool we develop here is the Fourier transform. We demonstrate how to com-
pute the Fourier transform and the associated spectrum in MATLAB. The spectrum pro-
vides a powerful technique to assess rhythmic structure in time series data.

3.2 Data Analysis

To access the EEG data for this chapter, visit

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

and download the file Ch3-EEG-1.mat.

3.2.1 Visual Inspection

A good place—often the best place—to begin data analysis is visual inspection of the time
series. Let’s plot the data in MATLAB:

load('Ch3-EEG-1.mat') %Load the EEG data,
plot(t,EEG) %... plot it vs time,
xlabel('Time [s]') %Label time axis.
ylabel('Voltage [ \muV]') %Label voltage axis.

Q: The EEG data are plotted in figure 3.1. What do you see?

You might notice by visual inspection a dominant rhythm. We can approximate the fre-
quency of this rhythm by counting the number of oscillations that occur in a 1 s interval.
To do so, we might count the total number of maxima in figure 3.1 and divide by 2 (because
we observe 2 s of data). However, counting so many maxima over an extended time inter-
val is quite error prone. Instead, let’s count the number of maxima in the first 0.2 s and then
multiply by 5; that will approximate the total number of peaks in a 1 s interval. We count
about 12 peaks in the first 0.2 s, which corresponds to approximately 60 peaks in 1 s, or
approximately 60 cycles per second, or 60 Hertz (Hz).
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Figure 3.1

EEG data provided by our collaborator.

Q: What if you counted the minima instead of the maxima? Do you get the same
answer? What if you counted the zero crossings?

Visual inspection suggests a dominant rhythmic activity at a frequency of 60 Hz. High-
frequency oscillations in the 40–80 Hz band (the gamma band) are thought to be important
for cognitive processing in the brain [7]. But there’s a reason for the label gamma band: the
rhythmic activity observed in vivo is typically diffuse, spread over a range of rhythms at
neighboring frequencies. The rhythmic activity observed here is concentrated and remark-
ably regular for EEG data. This perhaps makes us doubtful, and rightly so.

The alternating current in any North American electrical socket alternates at 60 Hz.

We therefore propose the most likely conclusion: the data are dominated by electrical noise.
We have at least three options: (1) Try to reduce the impact of this noise during the clinical
recording procedure, (2) abandon this analysis and pursue other research projects, or (3)
continue with additional analysis beyond visual inspection of the time series data. The
first option is too expensive and time consuming; the clinical recording system cannot be
changed without encountering significant regulations in the monitoring of human subjects.
The second option is not viable. So, we’ll pursue the third. Why? Visual inspection suggests
a dominant 60 Hz signal, but looks can be deceiving. Perhaps something else is there,
lurking in the signal background.
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The 60 Hz noise is not all bad. Because we expect it (in North America), we can use
this information to our advantage. As we build measures to characterize rhythms,
we can always check these measures by confirming that the 60 Hz rhythm appears.

If only visual inspection were enough! Sometimes it is, especially when something has
gone wrong (e.g., if the EEG trace were zero for all time, we should be suspicious). But
looks can be deceiving. The voltage trace in figure 3.1 looks like a continuous line drawn
on the page. That’s incorrect. If we look more closely, we find that the data consist of dis-
crete points (figure 3.2). Although the true brain signal may evolve as a continuous voltage
trace in time, we do not observe this true signal. Instead, we observe a discrete sampling
of this signal in time. The spacing between these samples is determined by the recording
device collecting the EEG data. In this case, the spacing between samples is small; our col-
laborator has told us that the data were sampled at 1000 Hz, which corresponds to a sample
of data every 1 ms. So, we observe not the (presumably) continuous true voltage signal but
instead discrete samples of this signal in time. Note that in figure 3.1 the discrete points are
so closely spaced that the discrete sampling of the signal appears to be a continuous curve
evolving in time.

To understand the impact of this discrete sampling, we first require some definitions.
Let’s define 1 as the time between samples, in this case 1 = 1 ms. We also define N as the
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Inspection of a small window of data to investigate discrete sampling of the EEG. Asterisks indicate individual
sample points. Time interval between points is the sampling interval, 1.
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total number of points observed, and T as the total time of the recording. These three terms
are related: T = N1. For T = 2 s of EEG data, there are N = T/dt = 2/0.001 = 2000
points. From this, we can also define the sampling frequency f0 = 1/1, which in this case
is 1000 Hz. Finally, we define a symbol for the data, x, which we also write as xn to
explicitly indicate the index n 2 {1, 2, 3, . . . , N} corresponding to the sample number. Let’s
also define all of these variables in MATLAB:

x = EEG; %Relabel the data variable.
dt = t(2)-t(1); %Define the sampling interval.
N = length(x); %Define the total number of data points.
T = N*dt; %Define the total duration of data.

We need to keep the sampling interval 1 and the total recording duration T in mind; both
play fundamental roles in the characterization of the rhythmic activity.

Q: In the second line of this code we define the sampling interval as dt=t(2)-t(1).
How else could we have defined dt? Would t(10)-t(9) be appropriate?

3.2.2 Mean, Variance, and Standard Deviation

As a first step in analyzing the EEG data, let’s define two of the simplest measures we can
use to characterize data x: the mean and the variance.1 To estimate the mean x̄, or average
value of x, we compute

x̄ = 1
N

NX

n=1

xn. (3.1)

In words, we sum the values of x for all n time indices, then divide by the total number of
points summed (N). To estimate the variance � 2 of x we compute,

� 2 = 1
N

NX

n=1

(xn � x̄)2, (3.2)

which characterizes the extent of fluctuations about the mean. The standard deviation is
simply the square root of the variance, � . It’s straightforward to compute all three quantities
using built-in MATLAB functions:

mn = mean(x); %Compute the mean of the data.
vr = var(x); %Compute the variance of the data.
sd = std(x); %Compute the standard deviation of the data.

1. We could instead write the sample mean because we use the observed data to estimate the theoretical mean
that we would see if we kept repeating this experiment. However, this distinction is not essential to our goals here.
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Q: Compare the mean computed in MATLAB with the EEG data plotted in figure
3.1. Are the two consistent? How does the standard deviation computed in MATLAB
compare with the EEG fluctuations in figure 3.1?

A: The computed mean is approximately 0. Visual inspection of figure 3.1 suggests
that the EEG data fluctuates around a center value of 0, so the computed mean is
consistent with the visual inspection of the data. The computed standard deviation
is approximately 0.71. We expect that most of the signal fluctuations lie within two
standard deviations (i.e., ±2� ) of the mean. We therefore expect to observe EEG
values mostly between 0 ± 1.4 = (�1.4, 1.4), which is in fact what we observe.

The mean, variance, and standard deviation provide single numbers that summarize the
EEG trace. In this case, these numbers are not particularly useful. They may depend on
many factors, including the electrical contact between the electrode and scalp surface, the
noise in the signal, and the cognitive state of the subject. Here, we’re more interested in
how the EEG activity is distributed across rhythms. We’ve already begun to assess rhythms
in the EEG data through visual inspection of the time series. To further characterize these
rhythms, we employ another powerful tool, the Fourier transform. Before introducing the
Fourier transform, we consider a related measure, the autocovariance.

3.2.3 Autocovariance

Visual inspection strongly suggested a prominent feature in the data: rhythmic activity.
Rhythmic activity represents a type of dependent structure in the data. For example, if we
know the data tend to oscillate near 60 Hz, then given the value of the EEG data now, we
can accurately predict the value of the EEG data 1/60 s in the future (i.e., one cycle of
the 60 Hz activity); it should be similar. One technique to assess the dependent structure
in the data is the autocovariance. The formula for the autocovariance, rxx

⇥
L
⇤
, evaluated at

lag L, is

rxx
⇥
L
⇤
= 1

N

N�LX

n=1

(xn+L � x̄)(xn � x̄). (3.3)

In words, the autocovariance multiplies the data x at index n + L by the data x at index n,
and sums these products over all indices n. Notice that in both terms the mean value x̄ is
subtracted from x before computing the product, and we divide the resulting sum by N, the
total number of data points in x. Note that (3.3) is a biased estimate of the autocovariance;
we compare this to an unbiased estimate of the autocovariance in the next section.

To gain some intuition for the autocovariance, let’s represent x graphically as a one-
dimensional row vector (figure 3.3a). For the case L = 0, the autocovariance is simply
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Figure 3.3

Cartoon representation of autocovariance. (a) Data x are represented as one-dimensional vector; with indices
n = {1, 2, 3, . . . , N}. Autocovariance at (b) lag 0, (c) lag 1, and (d) lag 2. Asterisks indicate multiplication between
elements of the two vectors. Gray index labels at beginning and end of vectors indicate data points not involved
in computing autocovariance at the chosen lag L.

the element by element product of x with itself, summed over all indices (figure 3.3b).
For the case L = 1, we shift x by one index, multiply element by element the original
(unshifted) x by the shifted version, and sum over all indices (figure 3.3c). This process of
shifting, multiplying element by element, and summing can be repeated for both positive
and negative values of the lag L. Notice that for larger values of L, we lose values at the
beginning and ends of the autocovariance.

Q: What is the largest reasonable value of L to consider? For example, does a value
of L greater than N make sense?

The autocovariance will be largest at the lag L for which the values of x match. For most
functions the autocovariance is largest at L = 0 (of course, x matches itself with zero shift)
and tends to decrease as the magnitude of L increases. Physically, the decrease in auto-
covariance with lag is consistent with the notion that data become less similar as time
progresses. For example, in an EEG recording, we expect the activity now to be similar to
the activity in the immediate future but different from the activity in the more distant future.
As the brain responds to different internal and external cues, we expect different EEG activ-
ities to emerge and associations between the EEG activity now and later to decay. Functions
x that exhibit dependent structure possess informative features in the autocovariance.
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Q: Compare the autocovariance at L = 0 and the variance (3.2). Notice anything
similar?

To compute the autocovariance of the EEG data, we execute the following commands in
MATLAB:

%Compute the autocov for L +/- 100 indices.
[ac,lags] = xcorr(x-mean(x),100,'biased');
%... and plot the autocov vs lags in units of time
plot(lags*dt,ac)
%... with axes labeled.
xlabel('Lag [s]')
ylabel('Autocovariance');

Q: Examine the autocovariance of the EEG data plotted in figure 3.4. What do you
observe?

The first input to the function xcorr is the EEG data with the mean subtracted
(x - mean(x)). One striking feature of the autocovariance is the periodicity. A careful
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Figure 3.4

(a) Autocovariance of the EEG. (b) Examples of EEG at different shifts. With no shift (top) traces exactly overlap.
With shift of one 60 Hz cycle (middle) traces appear quite similar. With shift of one-half the 60 Hz cycle (bottom)
traces move in opposite directions. Scale bar indicates 10 ms.
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inspection shows that the autocovariance exhibits repeated peaks and troughs approxi-
mately every 0.0166 s.

Q: Why does the autocovariance exhibit repeated peaks and troughs approximately
every 0.0166 s?

A: The autocovariance reflects the dominant rhythmic activity in the data. Remem-
ber that the EEG data are dominated by a 60 Hz rhythm (figure 3.1). To gain intuition
for how this rhythmic activity affects the autocovariance, we plot in figure 3.4 exam-
ples of the EEG data aligned with different lags L. At zero lag (L = 0), the two time
series are identical. Therefore, the product

(xn+0 � x̄)(xn � x̄) = (xn � x̄)(xn � x̄) = (xn � x̄)2

is non-negative for all indices n (the product may sometimes be zero, but it’s never
negative). To compute the autocovariance, we sum this product over all indices n, and
divide by N, as defined in (3.3). Because we sum many positive terms, we expect to
find a large positive value for rxx

⇥
0
⇤
. Shifting the EEG data by an integer multiple of

the 60 Hz cycle, we observe a similar voltage trace (figure 3.4b). Therefore, at this
lag L, we again expect the summed product

(xn+L � x̄)(xn � x̄)

over all indices n to be large, and to find a large positive value for rxx
⇥
L
⇤
. In fact, we

expect the autocovariance to be large and positive whenever the lag L is an integer
multiple of the 60 Hz cycle (i.e., an integer multiple of 1/60 ⇡ 0.0166 s); this is
exactly what we find in figure 3.4a.

Shifting the EEG data by half of the 60 Hz cycle, we observe a different type
of relation; at this lag, call it L⇤, positive values in the unshifted EEG correspond to
negative values in the shifted EEG (figure 3.4b). Therefore, most terms in the product

(xn+L⇤ � x̄)(xn � x̄)

are negative, and summing up these terms to compute the autocovariance (3.3), we
find a large negative value for rxx

⇥
L⇤⇤.

The autocovariance is a useful tool for assessing the dependent structure in the EEG data.
Visual inspection of the EEG reveals a specific type of dependent structure—a strong rhyth-
mic component—in the data. This dependent structure is further characterized in the auto-
covariance, in which the dominant 60 Hz activity manifests as periodic peaks and troughs.
In the next section, we consider a second tool, the spectrum, for assessing dependent struc-
ture in time series data. The autocovariance and spectrum are related in a remarkable way.
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Biased Versus Unbiased Autocovariance The equation for the autocovariance (3.3) is a
biased estimate of the true autocovariance. To compute an unbiased measure of the auto-
covariance, we replace the 1/N term in (3.3) with 1/(N � L),

r⇤
xx

⇥
L
⇤
= 1

N � L

N�LX

n=1

(xn+L � x̄)(xn � x̄). (3.4)

To examine the difference in the biased versus the unbiased autocovariance, let’s compute
both for the EEG data over a broad interval of lags:

[ac_u,lags]=xcorr(x-mean(x),2000,'unbiased');%Unbiased autocov,
plot(lags*dt,ac_u) %... plot it.
[ac_b,lags]=xcorr(x-mean(x),2000,'biased'); %Biased autocov,
hold on %... plot it.
plot(lags*dt,ac_b, 'r')
hold off
xlabel('Lag [s]') %Label the axes.
ylabel('Autocovariance');

Here we compute the autocovariance for ±2000 lags (second input to the xcorr func-
tion) and choose either an 'unbiased' or a 'biased' autocovariance (third input to the
xcorr function). We see in figure 3.5 the similarities and differences between these two
estimates. At small lags (near 0 s), the biased and unbiased estimates of the autocovariance
are similar. In this case, L is small, so the factor 1/(N � L) in the unbiased estimate is
similar to the factor 1/N in the biased estimate. At large lags (away from 0 s), the biased
and unbiased estimates of the autocovariance are quite different. As L approaches ±2 s,
the biased estimate approaches zero.
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Figure 3.5

Autocovariance of the EEG for biased (red) and unbiased (blue) estimates over a wide range of lags.
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Q: Why does the biased estimate of the autocovariance approach zero at large lags?

A: For concreteness, let’s consider the case when L = N � 2. In this case L is large,
and nearly equal to the number of points in the data (N). When L is large, we shift
the time series x so that only a subset of indices overlap. Consider the L = 2 case in
figure 3.3 and the extension to L = N � 2. Because we only compute the product

(xn+L � x̄)(xn � x̄)

for the overlapping indices of xn and xn+L, we only include two terms in the summa-
tion (3.3). The sum of these two terms is then divided by N, which results in a small
number that approaches zero as L approaches N.

Compare this observation to the unbiased estimate of the autocovariance. In this example,
we see that the unbiased estimate of the autocovariance remains large even as L approaches
±2 s (see figure 3.5).

Q: Why does the unbiased estimate of the autocovariance remain large at large lags?

A: As in the biased case, consider L = N � 2. In this case, L is large, and we shift
the time series x so that only a subset of indices overlap. Therefore, the product

(xn+L � x̄)(xn � x̄)

again only includes two terms in the summation (3.4). However, in the unbiased case,
the sum of these terms is divided by N � L = N � (N � 2) = 2; as L approaches N,
the term N � L approaches zero. In this case, we find a balance between the sum-
mation of two terms and then a division by the number of terms in the sum (in this
example, division by 2). This balance allows the unbiased estimate of the autoco-
variance to remain large as L approaches N.

Careful inspection of the blue curve in figure 3.5 reveals another feature of the
unbiased estimate; the estimated values at large lags become more variable (look
carefully at lags near ±1.75 s and beyond). Increased variability at large lags occurs
because as L approaches N, we have less data to compare in the assessment of the
autocovariance. Notice that when L = N � 1, the estimate of the autocovariance
utilizes only two data points from x (i.e., the product consists only of one term:
(xN � x̄)(x1 � x̄)). We do not expect a reliable assessment of associations in the data
with so few data points to compare.

With those observations, should we use the biased or unbiased estimator of the autocovari-
ance? Statisticians typically prefer the biased estimator for a variety of reasons [8]. First,
for many stationary processes, the mean squared error of the biased estimator is smaller
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than that of the unbiased estimator. The mean squared error depends on both the variance
and the bias of the estimator:

Mean squared error = Variance + (Bias)2. (3.5)

Although the biased estimator is “biased,” the variability of the unbiased estimator is more
harmful. We saw a hint of this increased variability in the unbiased estimator at large lags
in figure 3.5. To make this observation more explicit, let’s consider the lag L = N � 1, and
compute the expression for the biased estimator (3.3),

rxx
⇥
N � 1

⇤
= 1

N

N�(N�1)X

n=1

(xn+(N�1) � x̄)(xn � x̄)

= 1
N

1X

n=1

(xn+(N�1) � x̄)(xn � x̄)

= 1
N

(xN � x̄)(x1 � x̄). (3.6)

The expression for the unbiased estimator (3.4) becomes

r⇤
xx

⇥
N � 1

⇤
= 1

N � (N � 1)

N�(N�1)X

n=1

(xn+N�1 � x̄)(xn � x̄)

=
1X

n=1

(xn+N�1 � x̄)(xn � x̄)

= (xN � x̄)(x1 � x̄). (3.7)

These two expressions reveal that at a large lag L = N � 1, the variance of the unbiased
estimator (3.7) is N2 times the variance of the biased estimator (3.6). The dramatic increase
in variance of the unbiased estimator leads to unreliable estimates of the autocovariance at
large lags. Also, we note that the biased estimator behaves nicely as L increases to N;
we see from (3.6) that rxx

⇥
N � 1

⇤
approaches zero when N is large. This is arguably the

behavior we want. We have few data points to compare at large lags, and therefore an
unreliable estimate of the autocovariance, so we’re better off disregarding these values.
For these reasons, we use the biased estimator; in this estimate, autocovariance values at
large lags, which utilize less data and are typically noisier, are reduced.

For the EEG data of interest here, the unbiased estimator outperforms the biased esti-
mator. For these data, which are dominated by a 60 Hz rhythm, there is significant auto-
covariance even at long lags. In this case, the biased estimator leads to an interpretation of
decreasing autocovariance, even though that is not true. However, for most brain signals
(not saturated by 60 Hz line noise), we expect the autocovariance to decrease in time.
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3.2.4 Power Spectral Density, or Spectrum

There are many techniques to assess rhythmic activity in the EEG data. Here, we compute
the power spectral density, or simply the spectrum, of x using a well-established technique,
the Fourier transform.2

The spectrum of the data x is the magnitude squared of the Fourier transform of
x. The spectrum indicates the amplitude of rhythmic activity in x as a function of
frequency.

There are many subtleties associated with computing and interpreting the spectrum. We
explore some of them here; in doing so, we build our intuition for spectral analysis and
our ability to deal with future, unforeseen circumstances in other data we encounter in
research.

Computing the Spectrum. We start by presenting all the formulas and MATLAB code
necessary to compute the spectrum of the data. Then throughout the chapter, we circle
back and consider each step of the computation in detail.

We first need a formula for the discrete-time Fourier transform of the data x:

Xj =
NX

n=1

xn exp(�2⇡ i fj tn). (3.8)

The Fourier transform computes the sum over all time indices tn = 1{1, 2, 3, . . . , N} of
the data xn multiplied by sinusoids oscillating at a given frequency fj = j/T , where j =
{�N/2 + 1,�N/2 + 2, . . . , N/2 � 1, N/2}. The result is a new quantity Xj, the signal as a
function of frequency fj rather than time tn. The spectrum is then

Sxx,j = 212

T
XjX

⇤
j , (3.9)

which is the product of the Fourier transform of x with its complex conjugate (indicated by
the superscript ⇤), scaled by the sampling interval and the total duration of recording. The
term 212/T is simply a numerical scaling (see appendix C at the end of this chapter). The
units of the spectrum are, in this case, (µV)2/Hz. Computing the spectrum in MATLAB
requires only a few lines of code:

xf = fft(x-mean(x)); %Compute Fourier transform of x.
Sxx = 2*dtˆ2/T*(xf.*conj(xf)); %Compute spectrum.
Sxx = Sxx(1:length(x)/2+1); %Ignore negative frequencies.

2. The power spectral density describes the extent to which sinusoids of a single frequency capture the structure
of the data. To compute the power over any range of frequencies, we would integrate (or for discrete frequencies,
sum) the spectrum over that frequency range.
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df = 1/max(T); %Determine frequency resolution.
fNQ = 1/ dt / 2; %Determine Nyquist frequency.
faxis = (0:df:fNQ); %Construct frequency axis.

plot(faxis, Sxx) %Plot spectrum vs frequency.
xlim([0 100]) %Select frequency range.
xlabel('Frequency [Hz]') %Label the axes.
ylabel('Power [ \muVˆ2/Hz]')

That’s not so bad; the code to compute and display the spectrum fits in 12 lines (with
spacing for aesthetics). The results of this computation are plotted in figure 3.6. Notice the
large peak at 60 Hz. This peak is consistent with our visual inspection of the EEG data, in
which we approximated a dominant rhythm at 60 Hz by counting the number of peaks that
appeared in the voltage traces. So, our computation of the spectrum at least matches our
initial expectation deduced from visual inspection of the data.

So, we’ve managed to compute and plot the spectrum in MATLAB, and our analysis
results match our expectations. We could choose to stop here. But a danger persists: we’ve
blindly entered MATLAB code and achieved an expected result. What are the frequency
resolution and Nyquist frequency mentioned in the comments of the code? Maybe this
procedure is fraught with pitfalls, and we simply got lucky in this case? Does the spectrum
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Power spectrum of EEG data. A large peak occurs at 60 Hz along the horizontal axis.
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provide additional information that was not immediately uncovered in figure 3.6? How will
we react and adapt when the spectrum results do not match our intuition? To answer these
questions requires developing more intuition for the Fourier transform and spectrum. In
the following sections, we examine equations (3.8) and (3.9), and the MATLAB code. In
doing so, we explore some subtleties of this measure and strengthen our intuition for this
measure’s behavior. Building this intuition is perhaps the most important part for dealing
with unforeseen circumstances arising in your own data.

What Is the Fourier Transform Actually Doing? The Fourier transform represents the data x
as a linear combination of sinusoids with different frequencies. To see this, consider again
(3.8):

Xj =
NX

n=1

xn exp(�2⇡ i fj tn).

What is this expression actually doing? Let’s consider this equation piece by piece. The
first term,

NX

n=1

represents a sum over the indices of xn. Because each subsequent index represents a step
forward in time of 1, this sum represents a sum over time. In fact, this sum extends from
the first index (n = 1) to the last index (n = N) of the data, so the summation occurs over
the entire duration of the recording. Adding the second term,

NX

n=1

xn,

the summation now acts on the data xn, so we’re summing up the data over all indices or
equivalently over the entire time of recording. The third term,

exp(�2⇡ i fj tn),

consists of an exponential (exp) operating on the product of five individual terms, each of
which is a number. The first two numbers are simple: �2⇡ . The third number is i ⌘

p
�1,

a quantity representing an imaginary unit. The utility of the imaginary unit is that we can
rewrite the exponential as the sum of a sine and cosine function. Remember from calculus
the remarkable Euler’s formula:

exp(�2⇡ i fj tn) = cos(�2⇡ fj tn) + i sin(�2⇡ fj tn).
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Notice that the i now appears multiplying the sine term, and not inside of the arguments of
either sinusoid. Both sinusoids operate on the product of 2⇡ and two terms, the frequency
fj and the time tn. Rewriting (3.8) using Euler’s formula, we find

Xj =
⇣ NX

n=1

xn cos(�2⇡ fjtn)
⌘

+ i
⇣ NX

n=1

xn sin(�2⇡ fjtn)
⌘

, (3.10)

where the summation is distributed over both terms.
Written in this way, the Fourier transform becomes easier to interpret. Let’s consider the

first term of (3.10). For each index n, we multiply the data xn by a cosine function evaluated
at frequency fj and time tn. We then sum the results of this multiplication over all indices
from n = 1 to n = N, or equivalently, from time tn = 1 to time tn = T . So, we multiply the
data by a cosine function at frequency fj for each point in time, and sum the product over
time. The second term of (3.10) is like the first, except we multiply the data xn by a sine
function.

We therefore think of the Fourier transform as comparing the data x to the sinusoids
oscillating at frequency fj. When the data and sinusoid at frequency fj align the summa-
tion in the Fourier transform is large and the result Xj is a large number. When the data
and sinusoid at frequency fj do not align, the summation in the Fourier transform is small
and Xj is a tiny number. To make these ideas more concrete, consider the examples in
figure 3.7. In these simple examples, the data x are a perfect cosine with frequency 10 Hz

(a) (c)

(b) (d)

100 ms

0 0

0 0

Figure 3.7

Artificial data, a 10 Hz cosine function, compared to sinusoids at different frequencies. Data are depicted by
gray curves; cosine functions, by red solid curves; and sine functions, by red dotted curves. Scale bars indicate
100 ms. (a) Data compared to cosine and sine functions, each with frequency fj = 4 Hz. (b) Product of data and
4 Hz cosine function, and product of data and 4 Hz sine function. (c) Data compared to 10 Hz cosine and 10 Hz
sine functions. (d) Product of data and 10 Hz cosine function, and product of data and 10 Hz sine function.
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(figure 3.7a). Choosing fj = 4 Hz, we construct a sine and cosine function each oscillating
at 4 Hz (figure 3.7a). Then, to perform the calculation of (3.10) we multiply the data
x by the sinusoids at each point in time. The results of this computation are plotted in
figure 3.7b. Notice that the products alternate between positive and negative values
throughout time.

Q: In this case, what is the approximate value of Xj when fj = 4 Hz?

A: From (3.10) we know that Xj is the summation over time of the product of x
and the sinusoids. These products over time are plotted in figure 3.7b. Because each
product alternates between positive and negative values roughly equally over time,
the summation of the product over time is approximately zero. We therefore conclude
that both the real part (i.e., the cosine term in (3.10)) and the imaginary part (i.e., the
sine term in (3.10)) are small and Xj ⇡ 0 + 0i when fj = 4 Hz.

In this case, the sinusoids at frequency fj = 4 Hz do not align with the data x, and Xj

is nearly zero in both its real and imaginary parts. Now consider the case in which we
choose fj = 10 Hz. With this choice of fj, the data x and the cosine function align perfectly
(figure 3.7c). The product of the cosine function and the data is always non-negative (figure
3.7d), and therefore its summation over time results in a large positive number. In this case,
the real part of Xj is large because the cosine function with frequency fj =10 Hz and the
data x match. In this sense, the Fourier transform reveals the dominant frequencies of the
underlying time series.

Q: What is the approximate value of the imaginary part of Xj for fj = 10 Hz? Hint:
Consider the plot of the product of the sine function and data in figure 3.7d.

Relation of the Spectrum to the Autocovariance. We’ve now introduced two tools for
assessing dependent structure in the EEG data: the autocovariance and the spectrum.
Remarkably, these two measures are related in an important way.

The spectrum is the Fourier transform of the autocovariance.

The spectrum and autocovariance both assess dependent structure in the data but in dif-
ferent domains, the spectrum in the frequency domain and the autocovariance in the time
domain. Notice that the spectrum Sxx,j in (3.9) is a function of frequency index j, while the
autocovariance rxx

⇥
L
⇤

in (3.3) is a function of time lag L. For the EEG data of interest here,
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the dominant 60 Hz rhythm manifests as periodicity in the autocovariance as a function
of lag (figure 3.4a), and a peak in the spectrum as a function of frequency (figure 3.6).
Although the two measures are related through the Fourier transform, each provides a
different perspective on the dependent structure in the data. In practice, applying and visu-
alizing both measures is often of use. See appendix A at the end of this chapter for a more
mathematical discussion of this relation.

Here’s an associated mathematical nugget. The spectrum is the Fourier transform of x
multiplied by its complex conjugate. That produces a real number (i.e., the imaginary part
is 0), which is convenient for plotting and visualization. The autocovariance is necessarily
symmetric with respect to lag, that is, rxx

⇥
L
⇤
= rxx

⇥
� L

⇤
. In other words, the autocovari-

ance is an even function. The Fourier transform of an even function is real, so the Fourier
transform of the autocovariance is also a real number, consistent with the values of the
spectrum.

Relation of the Spectrum to Multiple Linear Regression. As a final perspective, we consider
a statistical modeling approach, with the goal of characterizing the rhythms that appear in
the EEG data. To develop this approach, we first introduce linear regression. The idea of
linear regression is to express a response variable at time n (call it xn) in terms of predictor
variables (call them z1n, z2n, . . . , zpn for p predictor variables) as

xn = �0 + �1z1n + �2z2n + · · · + �pzpn + ✏n, (3.11)

where ✏n is a random variable. This formulation represents the model we use in multiple
linear regression. The term multiple comes from the multiple predictors used. The term
linear expresses the fact that each predictor appears linearly in the expression (3.11). The
challenge is to identify the unknown coefficients (the �’s) given the observed response and
predictor variables. We note that the case of p = 1 corresponds to simple linear regression;
in that case, the goal is to fit the line,

xn = �0 + �1z1n + ✏n,

with slope �1 and intercept �0.
Let’s consider application of multiple linear regression to the EEG data with a specific

purpose: to remove the 60 Hz line noise. Recall that we found that the spectrum was dom-
inated by a 60 Hz peak (figure 3.6). We expect this 60 Hz is due to electrical noise in
the system, and this large noise peak may mask other interesting features occurring in the
EEG data. Therefore, our analysis of the EEG data may benefit by removing this large
60 Hz signal. To do so, we first fit a multiple linear regression model to the data xn with
the following form,

xn = �0 + �1 sin(2⇡60 tn) + �2 cos(2⇡60 tn) + ✏n, (3.12)
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where xn is the EEG data at index n, tn is the corresponding time axis at index n in units of
seconds, and ✏n is a random variable.

Q: The model consists of three predictors. What are they?

A: The predictors are a constant term, a sine function at 60 Hz, and a cosine function
at 60 Hz. Our goal is to solve for the unknown coefficients �0,�1, and �2 given the
EEG data.

This multiple linear regression is performed in MATLAB as follows:

%Define the model,
model = [ones(size(x)) sin(2*pi*60*t') cos(2*pi*60*t')];
%... and perform regression.
b = regress(x, model);

In the first line we define the model, which consists of a constant term (the variable ones),
the 60 Hz sine function, and the 60 Hz cosine function. We note that the variable t is
transposed so that model is a matrix with dimensions

⇥
2000, 3

⇤
. In the second line we ask

MATLAB to perform the regression using the function regress, and return the � values
in the single output variable b.

Q: Examine the output variable b. What do you find?

A: We find

b = -0.0000 0.9989 -0.0032

This result indicates that the constant predictor and the 60 Hz cosine predictor do
not contribute much to the data; the values b[1] and b[3] are both near zero. How-
ever, the 60 Hz sine function makes a much large contribution; the value b[2] is
near 1.

To see how well our multiple linear regression model fits the data, let’s evaluate the model,
and compare it to the original EEG data:

%Evaluate the model.
x_60Hz_modeled = b(1)+b(2)*sin(2*pi*60*t)+b(3)*cos(2*pi*60*t);
plot(t,x) %Plot the EEG data.
hold on %... freeze the graphics window,
plot(t,x_60Hz_modeled, 'r') %... and plot the modeled EEG data,
hold off %... release the graphics window,
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xlim([0.5 1]) %... examine 0.5 s of data,
xlabel('Time [s]') %... and label the axes.
ylabel('EEG and Modeled EEG [\muV)')

We plot the EEG data and model fit in figure 3.8. The model, which contains only three
predictors, appears to do quite a good job at capturing the 60 Hz activity in the EEG data.

Q: The multiple linear regression model (3.12) is not a perfect fit to the data. Why?

A: The multiple linear regression model includes only three predictors. We expect
the EEG data to consist of other features, including rhythms at other frequencies.
Therefore, this simple model cannot account for all features of the EEG time series.
That’s okay. The goal of this model was to fit a particular rhythm, the 60 Hz activity,
not every aspect of the data.

Now, let’s examine a powerful application of the model. We’ve constructed the model to
fit the 60 Hz line noise in the EEG data. Let’s now use the model to remove the 60 Hz line
noise from the original EEG data. To do so, we subtract the model fit from the EEG data
and then plot the resulting new signal:

%Evaluate the model.
x_60Hz_modeled = b(1)+b(2)*sin(2*pi*60*t)+b(3)*cos(2*pi*60*t);
x_cleaned=x-x_60Hz_modeled'; %... remove it from the EEG data,
plot(t,x_cleaned); %... and plot the result.
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Figure 3.8

Comparison of 0.5 s segment of EEG data (blue curve) and multiple linear regression fit (red curve) shows good
agreement.
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In the first line we use the model fit (the �’s in variable b) to define the modeled 60 Hz
EEG activity. Then, in the second line, we subtract this modeled 60 Hz activity from the
EEG data. We plot the results of the cleaned EEG data in figure 3.9.

Q: Consider the cleaned EEG data in figure 3.9. What activity do you now notice?
Compare the EEG data in this plot to the original EEG data (which includes the 60
Hz noise) in figure 3.1. What’s different?

In this example, we used multiple linear regression to model a particular rhythmic compo-
nent of the EEG data, the 60 Hz activity. We may also use the model result to estimate the
power at 60 Hz. In MATLAB,
Sxx_model_60Hz = b(2)ˆ2+b(3)ˆ2;

The power estimate from the model consists of two terms: the squared coefficient of the
sine function (b(2)ˆ2) plus the squared coefficient of the cosine function (b(3)ˆ2). Note
that the variable Sxx_model_60Hz has units of mV2.

Q: Compare the power estimate from the model (the variable Sxx_model_60Hz) to
the power spectral density at 60 Hz computed using the Fourier transform (see the
MATLAB code following (3.9)). What do you find?

A: We note that the units of the power spectral density (variable Sxx) are mV2/Hz,
while the units of the power estimated in variable Sxx_model_60Hz are mV2. To
convert the power spectral density to (integrated) spectral power, we must integrate
the variable Sxx over a frequency range. Here, we choose a 1 Hz interval centered
at 60 Hz, which corresponds to a single index of the variable faxis; the frequency
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Figure 3.9

EEG data after removal of 60 Hz line noise using multiple linear regression.
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resolution for these data is 0.5 Hz (see next section). Then the approximate inte-
grated power over this 1 Hz interval is Sxx(121)=0.9979, identical to the value in
Sxx_model_60Hz, and with the same units.

This example, in which we focused on the 60 Hz activity in the EEG, illustrates how we
may use multiple linear regression to estimate the power. We could extend this procedure
to include additional rhythms in the model beyond 60 Hz (e.g., sine and cosine functions at
1 Hz, 2 Hz, 3 Hz, etc.). In doing so, we would add more terms to the multiple linear
regression model and have more �’s to determine from the data. Multiple linear regres-
sion provides a way to decompose the EEG data into sine and cosine functions at different
frequencies—just as we proposed to do using the Fourier transform—and then compute
the power at each frequency. Using either multiple linear regression or the Fourier trans-
form, we aim to decompose the EEG into sine and cosine functions oscillating at different
frequencies.

Discrete Fourier Transform in MATLAB. Computing the spectrum of a signal x in MAT-
LAB can be achieved in two simple steps. The first step is to compute the Fourier transform
of x:

xf = fft(x-mean(x)); %The Fourier transform of x.

We subtract the mean from x before computing the Fourier transform. This is not necessary
but often useful. For these neural data, we’re not interested in the very slow (0 Hz) activity;
instead, we’re interested in rhythmic activity. By subtracting the mean, we eliminate this
low-frequency activity from the subsequent analysis.

The second step is to compute the spectrum, the Fourier transform of x multiplied by its
complex conjugate:

Sxx = 2*dtˆ2/T*(xf.*conj(xf)); %Compute the spectrum.

In this computation, we use the operation .* to multiply x by its complex conjugate.
This operation multiplies the two vectors element by element.

Figure 3.10 plots the resulting variable Sxx. Upon examining the horizontal axis in this
figure, we find it corresponds to the indices of x, beginning at index 1 and ending at index
N = 2000. Computing the Fourier transform and multiplying by the complex conjugate
does not change the length of the data x.
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Figure 3.10

Power spectrum of EEG data for all indices. Horizontal axis is in indices rather than frequency.

Q: Confirm in MATLAB that the variables x, xf, and Sxx all have the same size.

Inspection of figure 3.10 reveals a strange characteristic: there are two large peaks, and
the plot exhibits a particular symmetry. If we were to cut this plot from the printed page
and fold the resulting piece of paper at index 1000, we would find that the two peaks in
Sxx align; both peaks appear to be the same number of indices away from the center index
1000. This suggests that a redundancy occurs in the variable Sxx. In fact, this redundancy is
due to the way MATLAB relates the indices and frequencies of Sxx. To define this relation
requires two new quantities:

• the frequency resolution, df = 1
T

, or the reciprocal of the total recording duration;

• the Nyquist frequency, fNQ = f0
2

= 1
21

, or half of the sampling frequency f0 = 1
1

.

For the clinical EEG data considered here, the total recording duration is 2 s (T = 2 s), so
the frequency resolution df = 1/(2 s) = 0.5 Hz. The sampling frequency f0 is 1000 Hz,
so fNQ = 1000/2 Hz = 500 Hz. There’s much more to say about both quantities, but for
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Table 3.1

Relation between Vector Sxx Indices and Corresponding Frequencies.

Sxx index j 1 2 3 . . . N/2

Frequency formula 0 df 2 df . . . fNQ � df

Frequency value 0 0.5 Hz 1 Hz . . . 499.5 Hz

Sxx index j N/2 + 1 N/2 + 2 . . . N � 1 N

Frequency formula fNQ �(fNQ � df ) . . . �2 df �df

Frequency value 500 Hz �499.5 Hz . . . �1 Hz �0.5 Hz

now let’s simply use both quantities to consider how MATLAB relates the indices and
frequencies of the vector Sxx (see table 3.1). For the first half of Sxx, the frequency axis
increases in steps of the frequency resolution df (here, 0.5 Hz) until reaching the Nyquist
frequency fNQ (here, 500 Hz). This maximal frequency occurs just past the halfway point
of the indices, at index j = N/2 + 1. Beyond this index, the frequency axis is negative, and
the magnitude of the frequency becomes smaller and smaller until the value �df is reached
at index j = N.

We may now utilize a useful property of the Fourier transform. When a signal is real (i.e.,
the signal has zero imaginary component), the negative frequencies in the spectrum are
redundant. So, the power we observe at frequency f0 is identical to the power we observe
at frequency �f0. For this reason, we can safely ignore the negative frequencies; these
frequencies provide no additional information. Because the EEG data are real, we conclude
that the negative frequencies in the variable Sxx are redundant and can be ignored. As
a specific example, the value of Sxx at index j = 3 is the same as the value of Sxx at
index j = N � 1; these indices correspond to frequencies 2df and �2df , respectively (see
table 3.1). We therefore need only plot the variable Sxx for the positive frequencies, more
specifically, from index 1 to index N/2 + 1. This conclusion matches our visual inspection
of Sxx in figure 3.10.

Data collected in the world are almost always real (have zero imaginary component),
so the negative frequencies in the spectrum are usually redundant and can be ignored.

Given the total duration of the recording (T) and the sampling frequency (f0) for the data,
we can define the frequency axis for the spectrum Sxx. Now, to compute and plot the
spectrum in MATLAB, we again utilize the code first introduced early in section 3.2.4:

xf = fft(x-mean(x)); %Compute Fourier transform of x.
Sxx = 2*dtˆ2/T*(xf.*conj(xf)); %Compute the spectrum.
Sxx = Sxx(1:N/2+1); %Ignore negative frequencies.
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df = 1/max(T); %Determine the frequency resolution.
fNQ = 1/ dt / 2; %Determine the Nyquist frequency.
faxis = (0:df:fNQ); %Construct frequency axis.
plot(faxis, Sxx) %Plot spectrum vs frequency.

Notice that in the third line we select the first half of the vector Sxx up to index N/2 + 1,
thereby ignoring the redundant negative frequencies.

In the next two sections, we focus on interpreting and adjusting the quantities df and
fNQ. Doing so is critical to develop further an intuition for the spectrum.

Nyquist Frequency, fNQ. The formula for the Nyquist frequency is

fNQ = f0
2

. (3.13)

The Nyquist frequency is the highest frequency we can possibly hope to observe in the
data. To illustrate this, let’s consider a true EEG signal that consists of a very simple time
series—a pure sinusoid that oscillates at some frequency fs. Of course, we never observe the
true signal. Instead, we observe a sampling of this signal, which depends on the sampling
interval 1. We consider three cases for different values of 1. In the first case, we purchase
a very expensive piece of equipment that can sample the true signal at a high rate, f0 � fs.
In this case, we cover the true brain signal with many samples (figure 3.11, top), and given
these samples, we can accurately reconstruct the underlying data.

Now, consider the case in which we purchase a cheaper piece of equipment that samples
at a maximum rate equivalent to twice the frequency of the pure sinusoid: f0 = 2 fs. In this
case, we might collect sufficient samples to cover the underlying signal and approximate
the oscillation frequency (figure 3.11, middle): the first sample resides on a peak of the
sinusoid, the next sample on a trough, and so on. In this case, we collect two samples per
cycle of the underlying true signal. Given only these sample points, we can connect the
dots and still approximate the frequency of the true underlying sinusoid.

Q: For the sampling rate f0 = 2 fs, consider the case in which the first sample occurs
on a zero crossing of the sinusoid. At what point does the next sample occur? and
the next sample? If you connect the dots in this case, what do you find?

Finally, consider the case where our equipment records at a sampling rate less than the
frequency of the pure sinusoid signal: f0 < 2 fs. (figure 3.11, bottom). Assuming the first
sample occurs at a peak of the sinusoid, the next sample occurs not at a trough (that would
correspond to a sampling rate f0 = 2 fs) but instead just after the trough. Connecting the
samples with lines in this case produces something horrifying, an oscillation occurring at
a different, lower frequency. Notice what has happened in this case. Sampling the sinusoid
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Figure 3.11

Sampling a sinusoid at different rates. When sampling rate is high enough (top), the sampled data provide a good
approximation to the true data. When sampling rate is too low (bottom), the true high-frequency signal appears
as a low-frequency oscillation.

at too low a frequency (i.e., at a frequency less than twice the signal’s frequency, f0 < 2 fs)
causes this signal to manifest at a low-frequency upon sampling. This phenomenon—a
high-frequency signal appearing as a low-frequency signal upon sampling—is known as
aliasing. Once a signal has been aliased, it’s impossible to distinguish from true signals
oscillating at low frequencies.

To avoid aliasing, sample data at sufficiently high rates.

Typically, to prevent aliasing, recorded data are first analog-filtered before the digital sam-
pling occurs. The analog filtering guarantees that activity at frequencies exceeding a thresh-
old value (fc, say) are dramatically reduced. The sampling rate can then be chosen to exceed
this threshold value by at least a factor of 2 (i.e., f0 > 2 fc). We note that in this case the
EEG data were first analog-filtered at 200 Hz before digital sampling occurred at 1000
Hz. So, for our EEG data, aliasing is not a concern. For a more detailed investigation of
aliasing, see appendix B at the end of this chapter.

Frequency Resolution, df . The frequency resolution is defined as

df = 1
T

, (3.14)

where T is the total duration of the recording. For the EEG data in figure 3.1, T = 2 s, so
the frequency resolution is df = 1/(2s) = 0.5 Hz.
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Q: How do we improve the frequency resolution?

A: There’s only one way to do it: increase T , that is, record more data. For example,
if we demand a frequency resolution of 0.2 Hz, how much data must we record? We
can rearrange (3.14) to solve for T ,

T = 1
df

= 1
0.2 Hz

= 5 s. (3.15)

So, record 5 s of data to obtain a frequency resolution of 0.2 Hz.

Q: We estimate the spectrum using the preceding MATLAB code. As we record
more and more data, does the estimate of the spectrum improve?

A: Intuitively, you might answer yes. As we collect more and more data, we usu-
ally expect our estimate of a quantity (e.g., the mean or the standard deviation) to
improve. However, that is not the case for the spectrum. As we collect more and more
data, we acquire more and more points along the frequency axis (i.e., df becomes
smaller). However, our estimate of the power at each frequency does not improve [8].

To gain some intuition for the frequency resolution formula (3.14), consider the case in
which we collect T seconds of data. If the sampling interval is 1, then we collect N = T/1

data points; for example, for the EEG data of interest here, we collect N = 2000 data
points. We know that the number of observations in the data equals the number of fre-
quencies in the spectrum (where we now include negative frequencies); both the data
vector x and the spectrum vector Sxx have length N. We also know that the maximum
observable frequency in the spectrum, the Nyquist frequency, is fixed no matter how much
data we collect. Recall that the Nyquist frequency depends only on the sampling interval:
fNQ = 1/(21). Now, consider the case in which we increase T , or equivalently, increase N.
As we collect more and more data, the maximum frequency remains fixed at the Nyquist
frequency, while the length of the spectrum vector increases. We therefore need to fit
more and more frequency values between 0 Hz and the Nyquist frequency as N increases
(figure 3.12). This observation provides some intuition for the relation between the amount
of data recorded (T or N) and the frequency resolution (df ).

3.2.5 Reexamining the Spectrum—a Matter of Scale

Let’s now return to the spectrum of the EEG data. As plotted in figure 3.6, the spectrum is
dominated by a single peak at 60 Hz. Other, weaker rhythmic activity may occur in the data,
but these features remain hidden from visual inspection because of the large 60 Hz peak;
informally, we might state that the 60 Hz peak saturates the vertical scale in figure 3.6. One
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Figure 3.12

Cartoon representation of the relation between data duration and frequency resolution. Data (left) consist of
different numbers of samples (N). As N increases, the number of values on the frequency axis increases (right),
the maximal frequency (fNQ) remains fixed, and the frequency resolution (df ) decreases. Only non-negative
frequencies are shown.

technique to emphasize lower-amplitude rhythms hidden by large-amplitude oscillations is
to change the scale of spectrum to decibels. The decibel is a logarithmic scale and easily
computed in MATLAB as follows:

plot(faxis, 10*log10(Sxx/max(Sxx))) %Plot spectrum in decibels.
xlim([0 100]) %Select frequency range.
ylim([-60 0]) %Select decibel range.
xlabel('Frequency [Hz]') %Label axes.
ylabel('Power [dB]')

To change to the decibel scale, we first divide the spectrum by the maximum value observed
and then take the logarithm base 10 of this ratio and multiply the result by 10. The resulting
spectrum is shown in figure 3.13a. The 60 Hz rhythm is still dominant and exhibits the most
power.

Q: For this example, what is the value in decibels at 60 Hz?

A: Through our previous analysis, we know that the maximum value in the spectrum
occurs at 60 Hz. By dividing the original spectrum by this maximum, we scale the
spectrum at 60 Hz to a value of 1. The logarithm of 1 is 0, so we find a value of 0
at 60 Hz. Note that all other values are now smaller than 1 and therefore negative on
the decibel scale.

Different conventions exist to define the decibel scale. Here we first divide by the
maximum before computing the logarithm. Be sure to verify how the spectrum is
scaled (if at all) to interpret the decibel axis.
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Figure 3.13

Power spectrum of EEG data on a decibel scale. Frequency axis is (a) linear or (b) logarithmic.

The decibel scale reveals new structure in the spectrum. In particular, two peaks have
emerged at frequencies 5–15 Hz. These peaks are much weaker than the 60 Hz signal;
both peaks are approximately 30 dB below the maximum at 60 Hz, or equivalently, three
orders of magnitude weaker. Because these peaks are so small relative to the 60 Hz signal,
neither was apparent in the original plot of the spectrum (figure 3.6). To further emphasize
the low-frequency structure of the spectrum, we may also convert the frequency axis to a
logarithmic scale:

semilogx(faxis, 10*log10(Sxx/max(Sxx))) %Log-log scale
xlim([df 100]) %Select frequency range.
ylim([-60 0]) %Select decibel range.
xlabel('Frequency [Hz]') %Label axes.
ylabel('Power [dB]')

Notice the change in the first line to use the semilogx function in MATLAB. The
resulting spectrum (in the log-log scale) is plotted in figure 3.13b. By using the logarithmic
scale to stretch the low-frequency part of the horizontal axis, the two low-frequency peaks
become more apparent. The changes in figure 3.13 compared to the original spectrum
(figure 3.6) are purely cosmetic. However, these cosmetic changes have proved extremely
useful. The two lower-frequency peaks were originally hidden from us, both in visual
inspection of the raw data and in the original plot of the spectrum. In those cases, the
large-amplitude 60 Hz activity masked the smaller-amplitude (three orders of magnitude
smaller) rhythms.
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3.2.6 The Spectrum Changing in Time—The Spectrogram

The results in figure 3.13 suggest that three rhythms appear in the EEG signal: 60 Hz,
approximately 11 Hz, and approximately 6 Hz. Given only these results, we may reason-
ably conclude that these three rhythms appear simultaneously throughout the entire 2 s of
EEG recording. That is an assumption we make in computing the spectrum of the entire
2 s interval. To further test this assumption in the EEG data, we compute a final quantity,
the spectrogram. The idea of the spectrogram is to break up the time series into smaller
intervals of data and then compute the spectrum in each interval. These intervals can be
quite small and can even overlap. The result is the spectrum as a function of frequency and
time.

Q: Consider the 2 s of EEG data. If we break up these data into smaller intervals of
duration 1 s, what is the resulting frequency resolution of each interval? What is the
Nyquist frequency of each interval?

To compute and display the spectrogram in MATLAB, we use the (aptly named) function
spectrogram:

Fs = 1/dt; %Define the sampling frequency.
interval = round(Fs); %Specify the interval size.
overlap = round(Fs*0.95); %Specify the overlap of intervals.
nfft = round(Fs); %Specify the FFT length.

%Compute the spectrogram,
[S,F,T,P] = spectrogram(x-mean(x),interval,overlap,nfft,Fs);
imagesc(T,F,10*log10(P)) %... and plot it,
colorbar %... with a colorbar,
axis xy %... and origin in lower left,
ylim([0 70]) %... set the frequency range,
xlabel('Time [s]'); %... and label axes.
ylabel('Frequency [Hz]')

The function spectrogram accepts five arguments. Briefly, these arguments specify the
data (x), the interval size (specified in indices and here set to 1 s), the overlap between inter-
vals (here set to 95%), the number of points to use in the Fourier transform (here set to the
interval length), and the sampling frequency. More information about these options can be
found in the MATLAB documentation. Notice that in the first four lines we use the round
function to enforce integer values for three of these inputs. The resulting spectrogram is
plotted in figure 3.14.
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Figure 3.14

Spectrogram of EEG data. Power (in decibels, scale bar at right) is shown as a function of frequency and time.

Q: Consider the spectrogram in figure 3.14. What aspects of the spectrogram are
consistent with our previous results? What aspects are new? Consider, in particular,
the low-frequency rhythms and the conclusions deduced from this figure compared
to figure 3.13.

A: The spectrogram displays the spectrum (in decibels) as a function of frequency
(vertical axis) and time (horizontal axis). Values on the time axis indicate the center
times of each 1 s window (e.g., 0.5 s corresponds to times [0, 1] s in the data).
Intervals of high (low) values correspond to warm (cool) colors. Visual inspection
immediately provides new insights into the observed EEG rhythms. First, we observe
a band of high power at 60 Hz that persists for all time (red horizontal line in figure
3.14). This corresponds to the 60 Hz line noise present for the entire duration of
the recording. Second, we observe intervals of increased power near 11 Hz and 6
Hz. Unlike the 60 Hz signal, the two low-frequency rhythms do not persist for the



10234 003 2016/7/20 10:21 Page 80 #32

80 Chapter 3

entire 2 s recording (as we may have incorrectly concluded from examination of the
spectrum in figure 3.13). Instead, one weak rhythm (near 6 Hz) appears for the first
half of the recording, while another weak rhythm (near 11 Hz) appears for the second
half of the recording. Visualization via the spectrogram of how the rhythmic activity
changes in time allows this important conclusion.

Summary

In this chapter, we analyzed 2 s of EEG data. We started with visual inspection of the EEG
time series (figure 3.1). This is always the best place to start when analyzing new data and
provides initial important intuition for the time series. Through the initial visual inspection,
we concluded that rhythmic activity appeared and was dominated by a 60 Hz oscillation.
Then, to characterize further the rhythmic activity, we computed two related quantities: the
autocovariance and the spectrum. We found that rhythmic activity appeared in the auto-
covariance of the data. We then considered the spectrum. To do so, we first introduced
the notion of the Fourier transform and discussed in detail how to compute the spectrum
in MATLAB. We also defined two fundamental quantities—the frequency resolution and
the Nyquist frequency—and explored how to manipulate these quantities. (We recommend
you commit both quantities to memory. For every spectral analysis you encounter, ask:
What is the frequency resolution? What is the Nyquist frequency?). We then considered
how logarithmic scales can be used to emphasize features of the spectrum (figure 3.13),
and finally how the spectrogram provides insight into spectral features that change in time
(figure 3.14). We concluded that the EEG data are dominated by 60 Hz activity throughout
the 2 s interval, and that weaker low-frequency activity emerges during two intervals: a
6 Hz rhythm from 0 s to 1 s, and an 11 Hz rhythm from 1 s to 2 s.

In this chapter, we only touched the surface of spectral analysis; many details and issues
exist for further exploration. In chapter 4, we discuss the issues of windowing and zero
padding. For those interested in exploring further, see [8, 9].

Problems

3.1. To improve the frequency resolution requires we record more data (i.e., increase
T). Consider the case in which a collaborator demands a frequency resolution of
0.0001 Hz. How much data must be recorded? What are the disadvantages of record-
ing the data required?

3.2. Explore the MATLAB function periodogram. How does this function compare to
the computation of the spectrum described in this chapter?



10234 003 2016/7/20 10:21 Page 81 #33

Analysis of Rhythmic Activity in the Scalp EEG 81

3.3. A normalized measure of linear coupling in the time domain is the autocorrelation.
Here is the formula for the autocorrelation evaluated at lag L,

⇢xx
⇥
L
⇤
=

rxx
⇥
L
⇤

� 2 .

Notice that the autocorrelation at lag L equals the autocovariance at lag L (rxx
⇥
L
⇤
)

divided by the variance of the signal (� 2). Implement the autocorrelation in MAT-
LAB, and apply it to the dataset considered in this chapter. How do the results of the
autocovariance compare to the results of the autocorrelation?

3.4. Load the file Ch3-EEG-2.mat, available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. Then answer the following questions.

a. What is the sampling interval (1)? What is the total duration of the recording (T)?
What is the frequency resolution (df )? What is the Nyquist frequency (fNQ)?

b. Plot the data and visually inspect them. Describe briefly (in a sentence or two)
what rhythms, if any, you see in the data.

c. Plot the biased autocovariance versus lags. You will need to choose the maximum
number of lags to investigate. What structure do you observe in the autocovari-
ance, if any?

d. Plot the spectrum versus frequency. You may choose to plot the spectrum on a
decibel scale, or not. Defend your choice.

e. Plot the spectrogram as a function of frequency and time. You will need to choose
the interval size and the overlap between intervals. Do the rhythms in these data
appear to change in time?

f. Interpret the autocovariance and spectrum, and describe the rhythms present in
the signal. Compare your visual inspection of the data to the autocovariance and
spectrum results. Do the analyses agree or disagree?

3.5. Load the file Ch3-EEG-3.mat, available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. Then answer the following questions.

a. What is the sampling interval (1)? What is the total duration of the recording (T)?
What is the frequency resolution (df )? What is the Nyquist frequency (fNQ)?

b. Plot the data and visually inspect them. Describe briefly what rhythms, if any, you
see in the data.
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c. Plot the biased autocovariance versus lags. You will need to choose the maximum
number of lags to investigate. What structure do you observe in the autocovari-
ance, if any?

d. Plot the spectrum versus frequency. You may choose to plot the spectrum on a
decibel scale, or not. Defend your choice.

e. Plot the spectrogram as a function of frequency and time. You will need to choose
the interval size and the overlap between intervals. Do the rhythms in these data
appear to change in time?

f. Interpret the autocovariance and spectrum, and describe the rhythms present in
the signal. Compare your visual inspection of the data to the autocovariance and
spectrum results. Do the analyses agree or disagree?

3.6. Load the file Ch3-EEG-4.mat, available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. Then answer the following questions.

a. What is the sampling interval (1)? What is the total duration of the recording (T)?
What is the frequency resolution (df )? What is the Nyquist frequency (fNQ)?

b. Plot the data and visually inspect them. Describe briefly what rhythms, if any, you
see in the data.

c. Plot the biased autocovariance versus lags. You will need to choose the maximum
number of lags to investigate. What structure do you observe in the autocovari-
ance, if any?

d. Plot the spectrum versus frequency. You may choose to plot the spectrum on a
decibel scale, or not. Defend your choice.

e. Plot the spectrogram as a function of frequency and time. You will need to choose
the interval size and the overlap between intervals. Do the rhythms in these data
appear to change in time?

f. Interpret the autocovariance and spectrum, and describe the rhythms present in
the signal. Compare your visual inspection of the data to the autocovariance and
spectrum results. Do the analyses agree or disagree?

3.7. Load the file Ch3-EEG-5.mat, available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. Then answer the following questions.

a. What is the sampling interval (1)? What is the total duration of the recording (T)?
What is the frequency resolution (df )? What is the Nyquist frequency (fNQ)?
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b. Plot the data and visually inspect them. Describe briefly what rhythms, if any, you
see in the data.

c. Plot the biased autocovariance versus lags. You will need to choose the maximum
number of lags to investigate. What structure do you observe in the autocovari-
ance, if any?

d. Plot the spectrum versus frequency. You may choose to plot the spectrum on a
decibel scale, or not. Defend your choice.

e. Plot the spectrogram as a function of frequency and time. You will need to choose
the interval size and the overlap between intervals. Do the rhythms in these data
appear to change in time?

f. Interpret the autocovariance and spectrum, and describe the rhythms present in
the signal. Compare your visual inspection of the data to the autocovariance and
spectrum results. Do the analyses agree or disagree?

3.8. Consider the function x(t) = sin(2⇡ t2). Simulate this function in MATLAB using
a sampling interval of 1 = 0.001 ms, and t = (0, 10) s. Analyze these data as you
would an EEG time series collected in an experiment. Compute the spectrum, and
compute the spectrogram. Explain the results you find in each case, and how these
results compare to your expectations.

3.9. (Advanced) As stated in this chapter, to increase the frequency resolution of the spec-
trum, we must record more data (i.e., increase T). Consider a scenario in which the
experiment that produced the data of duration T is now inaccessible. We therefore
cannot perform another experiment of longer duration to improve the frequency res-
olution. So, we instead consider a work-around to improve the frequency resolution:
let’s simply append the data end to end. The result is a new dataset of duration 2T .
Note that the new dataset is redundant; the second half of the new dataset is a dupli-
cate of the first half. Does this improve the frequency resolution in a meaningful way?
Can we use this stratagem to append the observed data K times and thereby improve
the frequency resolution by a factor of K?

Appendix A: The Spectrum and Autocovariance

To show that the spectrum is the Fourier transform of the autocovariance, we first make
some reasonable assumptions that help simplify the analysis. Let’s assume that x has zero
mean (i.e., x̄ = 0), which we can always enforce by subtracting the mean from x as a first
step in the analysis. In addition, let’s assume we can evaluate x at any time index from
negative infinity to positive infinity. Then, substituting (3.8) into (3.9), we get the sample
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power spectral density,

Sxx,j = 212

T

⇣X

n

xn exp(�2⇡ i fj tn)
⌘⇣X

m

x⇤
m exp(2⇡ i fj tm)

⌘
. (3.16)

In the second term in parentheses, we set the dummy time index to another symbol, m. This
second term is the complex conjugate of the Fourier transform of the data. The impact of
the complex conjugate is that we replace i with �i, and xm with x⇤

m. Because the EEG
data are real, x⇤

m = xm. Notice that we do not include the limits on the summations, which
range from �1 to 1. Replacing the expressions for fj, tn, and tm with their definitions and
simplifying, we rearrange the expression to find

Sxx,j = 212

T

X

n

X

m

xnxm exp(�2⇡ i

N
j(n � m)). (3.17)

Let’s now define a new variable,

l = n � m. (3.18)

Then

Sxx,j = 212

1

X

l

⇣ 1
N

X

m

xm+l xm

⌘
exp(�2⇡ i

N
j l), (3.19)

where we have replaced the n with l, used T = N1, and reorganized the terms. Comparing
the term in parentheses to the equation for the biased autocovariance (3.3), we see that the
two are equivalent; remember that x̄ = 0. Therefore,

Sxx,j = 21
X

l

rxx
⇥
l
⇤

exp(�2⇡ i

N
j l)

= 21
X

l

rxx
⇥
l
⇤

exp(� 2⇡ i

N1
j1l)

= 21
X

l

rxx
⇥
l
⇤

exp(�2⇡ i
j

T
1l)

= 21
X

l

rxx
⇥
l
⇤

exp(�2⇡ i fj tl).

Comparing this last expression to the equation for the Fourier transform (3.8), we find that
the sample power spectral density (Sxx,j) is proportional to the Fourier transform of the
sample autocovariance (rxx

⇥
l
⇤
).
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Appendix B: Aliasing

We illustrated in figure 3.11 the concept of aliasing. In this appendix, we further investigate
the Fourier transform and the impact of sampling. Consider a signal y(t). As illustrated
in figure 3.2, we do not observe the signal directly. Instead, we only observe a discrete
sampling in time of this signal. Let’s make this sampling explicit, and write the observed
signal s(t) as

s(t) = y(t)
1X

n!�1
�(t � n1), (3.20)

where �(t) is the Kronecker delta, and 1 is the sampling interval. This equation represents
our discrete observations of y(t) at integer multiples of the sampling interval 1. Here, we
assume an infinite number of observations (into the past and future).

To compute the Fourier transform of s(t), we need to evaluate the Fourier transform of
the product of the two functions in (3.20): the signal y(t) and the summation of Kronecker
delta functions. The Fourier transform of the product of two functions equals the convolu-
tion of the Fourier transform of each function (see chapter 4). We use this fact to express
the Fourier transform of s(t) as

FT
⇥
s(t)

⇤
= FT

⇥
y(t)

⇤
? FT

⇥ 1X

n!�1
�(t � n1)

⇤
, (3.21)

where FT
⇥
a
⇤

denotes the Fourier transform of a, and A ? B indicates the convolution of
A and B. Let’s define Y(f ) = FT

⇥
y(t)

⇤
, and S(f ) = FT

⇥
s(t)

⇤
. We can evaluate the Fourier

transform of the repeated Kronecker delta functions as

FT
⇥ 1X

n!�1
�(t � n1)

⇤
= 1

1

1X

n!�1
�(f � n

1
)

= 1
1

1X

n!�1
�(f � nf0),

where we’ve replaced 1/1 with the sampling frequency f0. Then the Fourier transform of
the observed signal s(t) becomes

S(f ) = FT
⇥
s(t)

⇤
,

= Y(f ) ?
1
1

1X

n!�1
�(f � nf0)
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= 1
1

1X

n!�1
Y(f � nf0)

/
1X

n!�1
Y(f � nf0), (3.22)

where, in the last line, we’ve dropped the leading constant term for convenience of presen-
tation. This result relates the Fourier transform of the unobserved signal y(t) to the Fourier
transform of the observed (i.e., sampled) signal s(t). Note that S(f ) is an infinite summation
of terms. To make this example more concrete, let’s consider the case that the (unobserved)
signal is a cosine function at frequency f⇤,

y(t) = cos(2⇡ f⇤t),

with corresponding Fourier transform,

Y(f ) / �(f � f⇤) + �(f + f⇤). (3.23)

This result is perhaps intuitive; when the data consist of a pure sinusoid, we expect the
power (in the ideal case) to be concentrated at the sinusoid’s frequency. We usually ignore
the negative frequency component because it is redundant, but here we’ve been careful
to include both the positive frequency f = f⇤ and the negative frequency f = �f⇤ in the
representation of the Fourier transform. We’ve also ignored the constant terms in (3.23) to
focus on the quantities of interest. Substituting the expression for Y(f ) in (3.23) into the
expression for S(f ) in (3.22) we find

S(f ) /
1X

n!�1
�(f � f⇤ � nf0) + �(f + f⇤ � nf0). (3.24)

This result relates the Fourier transform of the observed signal S(f ) at frequency f to the
peaks we expect at the positive and negative frequencies of the sinusoid f⇤. However, we
observe not only these expected peaks (when n = 0) but also an infinite number of other
peaks (for n 6= 0).

To explore the impact of these additional peaks, consider a scenario in which the sinusoid
signal has frequency f⇤ = 20 Hz, and the sampling occurs with 1 = 0.01 s or f0 = 1/1 =
100 Hz. In this case,

S(f ) /
1X

n!�1
�(f � 20 � n100) + �(f + 20 � n100),
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and we find that S(f ) is nonzero when

f =

8
>>>><

>>>>:

20,�20, if n = 0,

120, 80, if n = 1,

�80,�120, if n = �1,

. . . .

At this sampling frequency, the Nyquist frequency is f0/2 = 50 Hz. We find that only
the n = 0 case provides frequencies f with magnitude less than the Nyquist frequency.
All other frequencies appear outside of the interval bounded by the Nyquist frequencies
(�50, 50) Hz and therefore do not manifest in our analysis of S(f ). This is the scenario we
desire: the Fourier transform of s(t) is concentrated at the frequencies of the sinusoid y(t).

Now, consider a second scenario in which the sinusoid signal has frequency f⇤ = 80 Hz,
and the sampling again occurs at f0 = 100 Hz. In this case,

S(f ) /
1X

n!�1
�(f � 80 � n100) + �(f + 80 � n100), (3.25)

and we find that S(f ) is nonzero when

f =

8
>>>><

>>>>:

80,�80, if n = 0,

180, 20, if n = 1,

�20,�180, if n = �1,

. . . .

(3.26)

In this case, at n = 0, both the positive and negative frequencies occur beyond the Nyquist
frequency; we therefore do not observe these 80 Hz peaks in the Fourier transform of
s(t). However, we do find for n = 1 a nonzero value for S(f ) at f = 20 Hz. In this case,
the negative frequency component has folded into the observable frequency range (here,
from 0 Hz to 50 Hz). Similarly, for n = �1, we find that the positive frequency component
has folded into the observable negative frequency range (here, from �50 Hz to 0 Hz).
Therefore, when we compute the Fourier transform of the 80 Hz sinusoid, we instead find
power concentrated at the much lower frequencies of ±20 Hz. The impact of aliasing is to
shift activity in the signal that occurs beyond the Nyquist frequency (i.e., high-frequency
components of y(t)) into the observable frequency range (from negative Nyquist frequency
to positive Nyquist frequency).
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Appendix C: Numerical Scaling of the Spectrum

We defined in (3.9) the sample power spectral density, which we rewrite here for conve-
nience,

Sxx,j = 212

T
XjX

⇤
j .

In this appendix, we consider some motivation for the leading term
212

T
. We consider

separately the three components of this leading term: 12, 1/T , and 2.

Term: 12
. Throughout this chapter, we’ve focused on the discrete-time Fourier transform,

defined in (3.8). The discrete-time Fourier transform is an approximation to the continuous-
time Fourier transform,

X(f ) =
Z 1

�1
x(t) exp(�2⇡ i f t)dt. (3.27)

In this equation, we evaluate the time integral of the continuous signal x(t) multiplied by
the continuous-time complex exponentials exp(�2⇡ i f t). Let’s consider a Riemann sum
approximation to this integral. To do so, we replace the integral with a summation over
discrete steps in time, and compute the area of the integrand between each step,

X(f ) =
1X

n=�1

⇣
x(1n) exp(�2⇡ i f 1n)

⌘
1.

Notice that we replace the continuous-time variable t with the discrete-time 1n, where
n includes all integers. We may think of

⇣
x(1n) exp(�2⇡ i f 1n)

⌘
as the height of each

rectangle, and 1 as the width of each rectangle in the Riemann sum. If we truncate this
summation to include a finite number of time points, we get

X(f ) ⇡
⇣ NX

n=1

xn exp(�2⇡ i fj tn)
⌘
1,

where xn is the signal evaluated at discrete times, tn is the discrete time, and fj the discrete
frequency. The impact of this truncation is to distort the spectrum (e.g., to produce side
lobes; see chapter 4). We then conclude

X(f ) ⇡ 1Xj,

which shows that the continuous-time Fourier transform is approximated by the discrete-
time Fourier transform (3.8) multiplied by the sampling interval 1. Then

X(f )X(f )⇤ ⇡
�
1Xj

��
1X⇤

j

�

⇡ 12XjX
⇤
j . (3.28)
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This result shows that the continuous-time Fourier transform multiplied by its complex
conjugate is approximated by the corresponding product of the discrete-time Fourier trans-
form multiplied by the constant 12.

Term: 1/T. To understand the scaling of the spectrum by 1/T , we begin with (3.8), the
definition of the discrete-time Fourier transform, with some additional notation,

Xj,N =
NX

n=1

xn exp(�2⇡ i fj tn),

where we’ve included the subscript N on Xj,N to indicate the total number of time points (or
equivalently the total time T = N1) in the summation. We now examine how Xj,N changes
as we increase T . Consider the simple case in which the data xn are a sinusoid. For the
appropriate choice of fj, we find an excellent match between the data xn and the real or
imaginary component of exp(�2⇡ i fj tn) (figure 3.15a). Multiplying these two components
point by point, and summing over time, results in Xj,N = C, where C is a number.

Now, imagine we increase T by a factor of 2. We assume that the data x are stationary,
so that we observe the same sinusoid, now for a duration of 2T . What is Xj,2N? Again, we
find an excellent match between the data and a sinusoid of frequency fj. To evaluate the
product summed over time 2T , we divide the sum into two intervals. We know that the first
half of the summation (from n = 1 to n = N) produces a value of C; that’s what we found
for Xj,N . Now, the second half of the summation is identical to the first half (figure 3.15b).

(a)

Multiply and sum: C

T
(b)

T T
Multiply and sum: C Multiply and sum: C

Figure 3.15

Impact of duration on the Fourier transform. (a) Artificial data (gray curve) are well matched by a sinusoid with
appropriate frequency (red curve). Multiplying these two components element by element and summing over all
time T yields a number, C. (b) Same data observed for a duration of 2T. Element by element products of the
data and matching sinusoid in first and second intervals of T are each equal to C, so total product over duration
2T is 2C.
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Therefore, we expect the second half of the summation (from n = N + 1 to n = 2N) to also
equal C. We conclude that Xj,2N = 2Xj,N = 2C. In a similar way, Xj,3N = 3C, Xj,4N = 4C,
and so on. The intuition is that because we observe the same signal for a longer time, the
summed product increases.

To choose the scaling of the spectrum requires one additional fact:

� 2 =
Z 1

0
Sxx(f )df , (3.29)

which states that the (theoretical) variance � 2 of a signal x equals the (theoretical) power
spectral density Sxx(f ) of x integrated over all positive frequencies. This relation is consis-
tent with the fact that the autocovariance is the inverse Fourier transform of the spectrum.
To see this, consider the inverse Fourier transform of the spectrum evaluated at lag 0. In
addition, this relation captures the idea that the spectrum decomposes the signal variance
into different frequency bands; by summing this decomposition over all frequency bands,
we calculate the total variance. To preserve this relation, we must choose an appropriate
scaling of the spectrum. Let’s replace Sxx(f ) in (3.29) with the discrete spectrum (3.9) and
approximate the integral over frequencies using Riemann sums:

� 2 =
X

j

212

T
Xj,NX⇤

j,N df

=
X

j

212

T
Xj,NX⇤

j,N

⇣ 1
T

⌘

= 212

T2

X

j

Xj,NX⇤
j,N . (3.30)

Notice that we’ve rewritten the frequency resolution df in terms of the total observation
time T and that we’ve explicitly indicated the total number of time points (or equivalently,
the total time T = N1) in the Fourier transform Xj,N .

Now consider (3.30) and the impact of increasing the observation time. Doing so leaves
the variance unaltered; if we observe a sinusoid for 1 s, and then the same sinusoid for K
s, the variance is the same. Therefore, we require that the right–hand side of (3.30) remain
unaltered. Let’s replace T ! K T and N ! K N in (3.30),

212

(K T)2

X

j

Xj,KNX⇤
j,KN = 212

K2T2

X

j

⇣
K Xj,N

⌘⇣
K X⇤

j,N

⌘

= 212

T2

X

j

Xj,NX⇤
j,N

= � 2. (3.31)
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The factor of K2 in the denominator (due to the T2 term in the denominator) cancels the
factor of K2 in the numerator (due to the product of the Fourier transforms of x). Altering
the duration of the recording does not alter the integrated spectrum; it remains equal to the
variance. The scaling by 1/T preserves this relation.

Term: 2. The factor of 2 in the spectrum (3.9) is a conventional choice when the negative
frequencies are ignored. We can think of this factor as accounting for the omitted negative
frequencies. We note that this choice makes the variance equal to the spectrum integrated
over positive frequencies in (3.29). If we were instead to remove this factor of 2 from the
spectrum, we would need to integrate the spectrum of all positive and negative frequencies
in (3.29) to equal the variance.

MATLAB Code. The ideas in this appendix are explored in the following MATLAB code.
In this example, we generate artificial data as Gaussian noise. In your own exploration
of this code, consider how the results change with the total duration of the recording
(variable T) or nature of the signal (variable d).

dt = 0.001; %Define the sampling interval.
T = 4; %Define the total duration of the recording.
t = (dt:dt:T); %Define a time axis.
N = length(t); %Define the number of samples.
d = randn(N,1); %Create artificial data.
d = d - mean(d); %Set mean to 0.

pow = 2*dtˆ2/T*(fft(d).*conj(fft(d))); %Compute the power,
%... then sum spectrum over positive frequencies, multiply by df.
POW = sum(pow(1:N/2+1))*(1/T);
vr = var(d); %Compute variance of data.

%Print the results.
fprintf(['Summed spectrum ' num2str(POW) '\n'])
fprintf(['Variance ' num2str(vr) '\n'])
fprintf(['Difference ' num2str(POW - vr) '\n'])


