
10234 007 2016/7/12 11:39 Page 195 #1

7 Investigation of Cross-Frequency Coupling in a

Local Field Potential

Synopsis

Data 100 s of local field potential data sampled at 1000 Hz.

Goal Characterize the coupling between rhythms of different frequency.

Tools Hilbert transform, analytic signal, instantaneous phase, cross-frequency
coupling.

7.1 Introduction

7.1.1 Background
In Chapter 5, we focused on the coherence between voltage activity recorded at two elec-
trodes. The coherence is a measure of association between rhythms at the same frequency.
In this chapter, we continue our study of field data but now focus on local field poten-
tial (LFP) recordings. The LFP is a measure of local population neural activity, produced
from small aggregates of neurons [15]. In these data, we examine the association between
rhythms of different frequencies.

In general, lower-frequency rhythms have been observed to engage larger brain areas
and modulate spatially localized fast oscillations [16–20]. This cross-frequency coupling
(CFC) between the power (or amplitude) of high-frequency rhythms and the phase of low-
frequency rhythms has been observed in many brain regions, has been shown to change in
time with task demands, and has been proposed to serve a functional role in working mem-
ory, neuronal computation, communication, and learning [21]. Although the cellular and
dynamic mechanisms of specific rhythms associated with CFC are relatively well under-
stood, the mechanisms governing interactions between different frequency rhythms and
the appropriate techniques for measuring CFC remain active research areas. Although we
consider only a single electrode recording here, note that these techniques can be extended
to association measures between electrodes as well.

7.1.2 Case Study Data
We are approached by a collaborator recording the local field potential (LFP) from rat hip-
pocampus. She has implanted a small bundle of electrodes, which remain (chronically)
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implanted as the rat explores a large circular arena. She is interested in assessing the
association between different frequency rhythms of the LFP, and more specifically whether
an association between different frequency rhythms exists as the rat explores the arena. To
address this question, she has provided us with 100 s of LFP data recorded during the
experiment (i.e., while the rat spontaneously explored the arena).

7.1.3 Goal
Our goal is to assess the associations between different frequency rhythms recorded in
the LFP. To do so, we analyze the LFP data by computing the cross-frequency coupling
of the time series. We construct two CFC measures that characterize how the phase of a
low-frequency signal modulates the amplitude envelope of a high-frequency signal. This
chapter assumes some knowledge of neural rhythms and their assessment. If the material
seems overly dense, consult the earlier case studies in chapters 3–6.

7.1.4 Tools
In this chapter, we develop two CFC measures. We introduce the concepts of the Hilbert
transform, analytic signal, instantaneous phase, and amplitude envelope.

7.2 Data Analysis

7.2.1 Visual Inspection
To access the data for this chapter, visit

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

and download the file Ch7-LFP-1.mat. Let’s begin with visual inspection of the LFP data.
To do so, we first load the LFP data into MATLAB and plot it:

load('Ch7-LFP-1.mat') %Load the LFP data,
plot(t,LFP) %... and plot it,
xlabel('Time [s]'); %... with axes labeled.
ylabel('Voltage [mV]')

Within an example 1 s interval, rhythmic activity in the LFP is apparent (figure 7.1).
Visual inspection immediately suggests a dominant low-frequency rhythm interspersed
with smaller-amplitude blasts of high-frequency activity.

Q: Approximate the rhythmic activity by visual inspection of the LFP data plotted
in figure 7.1. What is the frequency of the large-amplitude rhythm? Do you observe
high-frequency activity? If so, where in time, and at what approximate frequency?
What is the sampling frequency of these data? If you were to compute the spectrum
of the entire dataset (100 s of LFP), what would be the Nyquist frequency and the
frequency resolution? Hint: In figure 7.1, consider the times near 4.35 s and 4.5 s.
Do you see the transient fast oscillations?
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Figure 7.1

Example trace of LFP data.

Note: If you have no idea how to address these questions, or if the terminology
seems completely unfamiliar, consider reviewing the case studies in chapters 3 and
4. In those chapters, the notions of rhythms are developed in much greater detail, as
well as the spectrum, Nyquist frequency and frequency resolution.

7.2.2 Spectral Analysis
Visual inspection of the LFP data suggests that multiple rhythms appear. To further char-
acterize this observation, we compute the spectrum of the LFP data.1 We analyze the entire
100 s of data and compute the spectrum with a Hanning taper (see chapter 4). In MATLAB,

load('Ch7-LFP-1.mat') %Load the LFP data.
dt = t(2)-t(1); %Define the sampling interval.
T = t(end); %Define the duration of data.
N = length(LFP); %Define no. of points in data.

x = hann(N).*transpose(LFP); %Multiply data by Hanning taper.
xf = fft(x-mean(x)); %Compute Fourier transform of x.
Sxx = 2*dtˆ2/T *(xf.*conj(xf)); %Compute the spectrum.
Sxx = Sxx(1:N/2+1); %Ignore negative frequencies.

df = 1/max(T); %Define frequency resolution.
fNQ = 1/dt/2; %Define Nyquist frequency.

1. We could instead write the sample spectrum because we use the observed data to estimate the theoretical
spectrum that we would see if we kept repeating this experiment. However this distinction is not essential to the
discussion here.
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faxis = (0:df:fNQ); %Construct frequency axis.
plot(faxis, 10*log10(Sxx)) %Plot spectrum vs frequency.
xlim([0 200]); ylim([-80 0]) %Set frequency & decibel range.
xlabel('Frequency [Hz]') %Label axes.
ylabel('Power [ mVˆ2/Hz]')

Q: Does the use of the Fourier transform and Hanning taper make sense? Do the
expressions for the frequency resolution (df), Nyquist frequency (fNQ), and spec-
trum (Sxx) make sense?

A: If you answered yes in all cases, you’re right. If not, consider reviewing the case
studies in chapters 3 and 4.

The resulting spectrum, shown in figure 7.2, reveals two intervals of increased power spec-
tral density. The lowest-frequency peak at 6 Hz is also the largest and corresponds to the
slow rhythm we observe dominating the signal through visual inspection of figure 7.1. At
higher frequencies, we find an additional broadband peak at approximately 80–120 Hz.
These spectral results support our initial visual inspection of the signal; there exist both
low- and high-frequency activities in the LFP data. We now consider the primary question
of interest: Do these different frequency rhythms exhibit associations?

7.2.3 Cross-Frequency Coupling
To assess whether different frequency rhythms interact in the LFP recording, we imple-
ment a measure to calculate CFC. The idea of CFC analysis is to determine whether a
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Figure 7.2

Spectrum of LFP data.
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relation exists between the phase of a low-frequency signal and the envelope or amplitude
of a high-frequency signal. In general, computing CFC involves three steps. Each step con-
tains important questions and encompasses entire fields of study. Our goal in this section is
to move quickly forward and produce a procedure we can employ, investigate, and criticize.
Continued study of CFC—and the associated nuances of each step—is an active area of
ongoing research.

CFC analysis steps

1. Filter the data into high- and low-frequency bands.

2. Extract the amplitude and phase from the filtered signals.

3. Determine if the phase and amplitude are related.

1. Filter the Data into High- and Low-Frequency Bands. The first step in the CFC analysis
is to filter the data into two frequency bands of interest. The choice is not arbitrary: the
separate frequency bands are motivated by initial spectral analysis of the LFP data. In this
case, we choose the low-frequency band as 5–7 Hz, consistent with the largest peak in the
spectrum, and the high-frequency band as 80–120 Hz, consistent with the second-largest
broadband peak (figure 7.2). To consider alternative frequency bands, the same analysis
steps would apply.

There are many options to perform the filtering. To do so requires us to design a filter
that ideally extracts the frequency bands of interest without distorting the results. Here, we
apply a finite impulse response (FIR) filter (see chapter 6). In MATLAB,

dt = t(2)-t(1); %Define the sampling interval.
Fs = 1/dt; %Define the sampling frequency.
fNQ = Fs/2; %Define the Nyquist frequency.

%For low-frequency interval,
Wn = [5,7]/fNQ; %...set the passband,
n = 100; %...and filter order,
b = fir1(n,Wn); %...build bandpass filter.
Vlo = filtfilt(b,1,LFP); %...and apply filter.

%For high-frequency interval,
Wn = [80,120]/fNQ; %...set the passband,
n = 100; %...and filter order,
b = fir1(n,Wn); %...build bandpass filter.
Vhi = filtfilt(b,1,LFP); %...and apply filter.

For each frequency band, we specify a frequency interval of interest by defining the low-
and high-cutoff frequencies in the vector Wn. This vector contains two elements, and we
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divide this vector by the Nyquist frequency (fNQ). In this way, we specify the passband of
the filter on the interval between 0 and 1, where 1 represents the Nyquist frequency. We
then set the filter order (n) and design the filter using the MATLAB function fir1. Finally,
we apply the filter using the MATLAB function filtfilt, which performs zero-phase filter-
ing by applying the filter in both the forward and reverse directions (see chapter 6). We note
that the filtering procedure is nearly the same in both frequency bands; the only change is
the specification of the frequency interval of interest.

If the filtering procedure seems puzzling consider completing the case study in chap-
ter 6. That chapter describes filtering in detail.

To understand the impact of this filtering operation on the LFP, let’s plot the results
(figure 7.3). As expected, the low-frequency band captures the large-amplitude rhythm
dominating the LFP signal, while the higher-frequency band isolates the brief bursts of
faster activity.

2. Extract the Amplitude and Phase from Filtered Signals. The next step in the CFC pro-
cedure is to extract the phase of the low-frequency signal and the amplitude envelope (or
simply, amplitude) of the high-frequency signal. To gain some intuition for this operation,
let’s consider the amplitude and phase for the example signals in figure 7.3. We plot the
low-frequency signal and its phase in figure 7.4a. As time progresses, the phase increases
nearly linearly from �⇡ to ⇡ . At ⇡ , the phase jumps suddenly to �⇡ . This apparent dis-
continuity is imposed by the space on which the phase evolves: a circle.

As another example of such a space, consider the time on a 24-hour clock changing
suddenly from 23:59 to 00:00. In this case, the measurement has suddenly shifted discon-
tinuously, but time has not; this discontinuity appears because we choose to measure time
in 24-hour intervals (for good reason). The same is true of the phase that we choose to

Figure 7.3

Examples of filtering the LFP data. Original LFP signal (blue) is filtered into a low-frequency band (red) and a
high-frequency band (green). Scale bar indicates 0.1 s.
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(a) (b)

Figure 7.4

Examples of phase and amplitude of filtered LFP data. (a) Phase (black) of low-frequency signal (red) increases
from �⇡ to ⇡ over time. (b) Amplitude envelope (black) outlines deviations of high-frequency signal (green).
Scale bar indicates 0.1 s.

measure, from �⇡ to ⇡ . The two endpoints (�⇡ and ⇡ ) actually touch on the space of a
circle but appear to discontinuously jump when plotted on the plane.

The amplitude envelope (figure 7.4b) outlines the extent of deviations of the high-
frequency signal. Notice that the envelope fluctuates much less rapidly than the underlying
high-frequency signal.

To compute CFC, we compare the two signals we’ve extracted from the data, the phase
of the low-frequency activity and the amplitude envelope of the high-frequency activity
(figure 7.4). How do we actually extract the phase and amplitude signals from the data?
There are a variety of options to do so, and we choose here to employ the analytic signal
approach, which allows us to estimate the instantaneous phase and amplitude envelope of
the LFP.

The first step in computing the analytic signal is to compute the Hilbert transform. We
begin with some notation. Define x as a narrowband signal (i.e., a signal with most of its
energy concentrated in a narrow frequency range,2 e.g., the low- or high-frequency band
filtered signals in figure 7.3). Then the Hilbert transform of x, let’s call it y, is

y = H(x).

It’s perhaps more intuitive to consider the effect of the Hilbert Transform on the frequencies
f of x,

H(x) =

8
><

>:

�⇡/2 phase shift if f > 0,
0 phase shift if f = 0,

⇡/2 phase shift if f < 0.

The Hilbert transform H(x) of the signal x produces a phase shift of ±90 degrees for
⌥ frequencies of x.

2. The impact of this narrowband assumption on CFC estimates remains an open research topic. One might
consider, for example, the meaning and implications of estimating phase from a broadband signal, and the impact
on subsequent CFC results.
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The Hilbert Transform can also be described in the time domain, although its represen-
tation is hardly intuitive (see the appendix at the end of this chapter). Then the analytic
signal z is

z = x + i y = x + i H(x). (7.1)

The effect of the Hilbert transform is to remove negative frequencies from z. As it stands,
this is not obvious. To get a sense for why this is so, let’s consider a simple example.

What Does the Hilbert Transform Do? Let x0 be a sinusoid at frequency f0,

x0 = 2 cos(2⇡ fo t) = 2 cos(!0 t), (7.2)

where to simplify notation we have defined !0 = 2⇡ fo. We know from Euler’s formula
that

x0 = ei!0t + e�i!0t. (7.3)

The real variable x0 possesses both a positive and a negative frequency component (i.e.,
!0 and �!0). So, the spectrum has two peaks (figure 7.5). For real signals, which include
nearly all recordings of brain activity, the negative frequency component is redundant, and
we usually ignore it. However, the negative frequency component still remains.

By definition, the effect of the Hilbert transform is to induce a phase shift. For positive
frequencies, the phase shift is �⇡/2. We can produce this phase shift by multiplying the
positive frequency part of the signal by �i.

Q: Why does a phase shift of �⇡/2 correspond to multiplication by �i ?

A: Consider the complex exponential ei!0t, which consists of only a positive fre-
quency component (!0). This signal shifted in phase by �⇡/2 corresponds to the
new signal ei(!0t�⇡/2), which simplifies to

ei(!0t�⇡/2) = ei!0te�i⇡/2 = ei!0t
⇣

cos(⇡/2) � i sin(⇡/2)
⌘

= ei!0t(�i).

Frequency 
0−ω0 ω0

P
ow

er

Figure 7.5

Spectrum of a sinusoid has two peaks, at positive and negative frequencies.
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Notice the result simplifies to the original complex exponential ei!0t multiplied by
�i. This shows that the �⇡/2 phase shift corresponds to multiplication of the posi-
tive frequency component (ei!0t) by �i.

Q: Can you show that a ⇡/2 phase shift corresponds to multiplication by i?

This analysis shows that we can represent the Hilbert Transform of x at frequency f as

H(x) =

8
><

>:

�i x if f > 0,
0 if f = 0,

i x if f < 0.

Therefore, the Hilbert transform of x0 = ei!0t + e�i!0t becomes

y0 = H(x0) = �iei!0t + ie�i!0t.

In this equation, we multiply the positive frequency part of x0 (i.e., ei!0t) by �i, and the
negative frequency part of x0 (i.e., e�i!0t) by i. Simplifying this expression using Euler’s
formula, we find

y0 = 2 sin(!0t). (7.4)

Q: Can you perform this simplification? In other words, can you show that �iei!0t +
ie�i!0t = 2 sin(!0t)?

The Hilbert Transform of x0 (a cosine function) is a sine function. We could perhaps have
guessed this: sine is a 90-degree (⇡/2) phase shift of cosine.

We are now ready to define the analytic signal (z0) for this example. Using the expres-
sions for x0 and y0 and Euler’s formula, we find

z0 = x0 + i y0 = 2 cos(!0t) + i 2 sin(!0t) = 2ei!0t.

Notice that this analytic signal z0 contains no negative frequencies; as mentioned, the effect
of the Hilbert Transform is to eliminate the negative frequencies from x. The spectrum of
this signal consists of a single peak at !0, compared to the two peaks at ±!0 in the original
signal x (figure 7.5). In this sense, the analytic signal (z0) is simpler than the original sig-
nal x0. To express the original signal x0 required two complex exponential functions—see
(7.3)—compared to only one complex exponential required to express the corresponding
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Cartoon of real time series x0 (red) plotted in the complex plane. The two complex exponentials (orange) cancel in
their imaginary parts to produce x0. Over time, the two complex exponentials rotate (gray) so that their imaginary
parts cancel at each moment in time and x0 remains on the real axis. Blue circle indicates radius 1.

analytic signal z0. There’s an interesting geometrical interpretation of this. Consider plot-
ting x0 in the complex plane (figure 7.6). Because x0 is real, this quantity evolves in time
along the real axis. To keep x0 on the real axis, the two complex exponentials that define
x0 (i.e., ei!0t and e�i!0t) rotate in opposite directions along the unit circle. By doing so,
the imaginary components of these two vectors cancel, and we’re left with a purely real
quantity x0.

Q: The phase of a complex quantity is the angle with respect to the real axis in the
complex plane. What is the angle of x0 in figure 7.6?

2. Extracted the Amplitude and Phase from Filtered Signal (Continued). Having developed
some understanding of the Hilbert Transform, let’s now return to the LFP data of interest
here. It’s relatively easy to compute the analytic signal and extract the phase and amplitude
in MATLAB:

phi=angle(hilbert(Vlo));%Compute phase of low-freq signal.
amp=abs(hilbert(Vhi)); %Compute amplitude of high-freq signal.

These operations require just two lines of code. But beware of the following.

Alert! The command hilbert(x) returns the analytic signal of x, not the Hilbert
transform of x.
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To extract the phase, we apply the MATLAB function angle to the analytic signal of the
data filtered in the low-frequency band (variable Vlo). We then extract the amplitude of the
analytic signal of the data filtered in the high-frequency band (variable Vhi) by computing
the absolute value (MATLAB function abs).

To summarize, in this step we apply the Hilbert transform to create the analytic signal
and get the phase or amplitude of the bandpass-filtered data.

3. Determine if the Phase and Amplitude are Related. As with the previous steps, we have
at our disposal a variety of procedures to assess the relation between the phase (of the
low-frequency signal) and amplitude (of the high-frequency signal). We do so here in two
ways.

Method 1: Phase-amplitude plot. To start, define the two-column phase-amplitude vector,
0

BBBB@

�(1) A(1)

�(2) A(2)

�(3) A(3)
...

...

1

CCCCA
,

where �(i) is the phase of the low-frequency band activity at time index i, and A(i) is
the amplitude of the high-frequency band activity at time index i. In other words, each row
defines the instantaneous phase and amplitude of the low- and high-frequency filtered data,
respectively.

We now use this two-column vector to assess whether the phase and amplitude envelope
are related. Let’s begin by plotting the average amplitude versus phase. We divide the phase
interval into bins of size 0.1 beginning at �⇡ and ending at ⇡ . The choice of bin size is
somewhat arbitrary; this choice will work fine, but you might consider the impact of other
choices.

For a chosen phase bin, determine the time indices where the phase � falls within this
phase bin; we can think of these times as indexing specific rows of the two-column phase-
amplitude vector. Then compute the average amplitude at these same time indices. The
result is the average amplitude for phases that lie within the chosen phase bin. Finally,
repeat this procedure for all phase bins. We implement these steps in MATLAB and plot
the results as follows:

p_bins = (-pi:0.1:pi); %Define the phase bins.
a_mean = zeros(length(p_bins)-1,1); %Vector for average amps.
p_mean = zeros(length(p_bins)-1,1); %Vector for phase bins.
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for k=1:length(p_bins)-1 %For each phase bin,
pL = p_bins(k); %... lower phase limit,
pR = p_bins(k+1); %... upper phase limit.
indices=find(phi>=pL & phi<pR); %Find phases falling in bin,
a_mean(k) = mean(amp(indices)); %... compute mean amplitude,
p_mean(k) = mean([pL, pR]); %... save center phase.

end

Q: Consider the plot of average amplitude versus phase (figure 7.7a). Does this
result suggest CFC occurs in these data?

A: We plot in figure 7.7a the phase bins (variable p_mean) versus the mean ampli-
tude in each bin (variable a_mean). Visual inspection of this phase-amplitude plot
suggests that the amplitude of the high-frequency signal depends on the phase of
the low-frequency signal. In particular, we note that when the phase is near a value
of 2 radians, the amplitude tends to be large, while at other phases the amplitude
is smaller. This conclusion suggests that CFC does occur in the data; the high-
frequency amplitude depends on the low-frequency phase.

Q: If no CFC occurred in the data, what would you expect to find in the plot of
average amplitude versus phase?
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Figure 7.7

Phase-amplitude plot between low-frequency phase and high-frequency amplitude envelope. (a) Average ampli-
tude of the high-frequency band versus phase of low-frequency band. Value of statistic h is length of the blue
vertical line. (b) Distribution of h values for surrogate data (bars) versus observed value of h (red vertical line).
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As a basic statistic to capture the extent of this relation, we compute the difference between
the maximum and minimum of the average amplitude envelope over phases (blue vertical
line in figure 7.7a). Let’s assign this difference the label h. In MATLAB,

%Difference between max and min modulation.
h = max(a_mean)-min(a_mean);

We find a value of h = 0.1265. This value, on its own, is difficult to interpret. Is it bigger
or smaller than we expect? To assess the significance of h, let’s generate a surrogate phase-
amplitude vector by resampling without replacement the amplitude time series (i.e., the
second column of the phase-amplitude vector). Resampling is a powerful technique that
we have applied in our analysis of other case study data.3 By performing this resampling,
we reassign each phase an amplitude chosen randomly from the entire 100 s LFP recording.
We expect that if CFC does exist in these data, then the timing of the phase and amplitude
vectors will be important; for CFC to occur, the amplitude and phase must coordinate in
time. By disrupting this timing in the resampling procedure, we expect to eliminate the
coordination between amplitude and phase necessary to produce CFC.

For each surrogate phase-amplitude vector, we compute the statistic h. To generate a
distribution of h values, let’s repeat 1,000 times this process of creating surrogate data
through resampling and computing h. In MATLAB,

n_surrogates = 1000; %Define no. of surrogates.
hS = zeros(n_surrogates,1); %Vector to hold h results.
for ns=1:n_surrogates; %For each surrogate,

ampS = amp(randperm(length(amp))); %Resample amplitude,
p_bins = (-pi:0.1:pi); %Define the phase bins.
a_mean = zeros(length(p_bins)-1,1); %Vector for average amps.
p_mean = zeros(length(p_bins)-1,1); %Vector for phase bins.
for k=1:length(p_bins)-1 %For each phase bin,

pL = p_bins(k); %...lower phase limit,
pR = p_bins(k+1); %...upper phase limit.
indices=find(phi>=pL & phi<pR); %Find phases in bin,
a_mean(k) = mean(ampS(indices)); %...compute mean amp,
p_mean(k) = mean([pL, pR]); %...save center phase.

end
hS(ns) = max(a_mean)-min(a_mean); %Store surrogate h.

end

In this code, we first define the number of surrogates (variable n_surrogates) and a
vector to store the statistic h computed for each surrogate phase-amplitude vector (vari-
able hS). Then, for each surrogate, we use the MATLAB function randperm to randomly

3. For a review of resampling, applied in a different case study, see chapter 2.
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permute the amplitude vector without replacement. We then use this permuted amplitude
vector (variable ampS) and the original phase vector (variable phi) to compute h; this last
step utilizes the MATLAB code developed earlier to compute h for the original (unper-
muted) data.

Q: Do you notice any inefficiencies in this code? If so, how would you modify
the code to avoid these inefficiencies (e.g., repeated calculations of unchanging
quantities)?

Figure 7.7b shows the results of this resampling procedure as a histogram of the variable
hS. The value of h computed from the original data lies far outside the distribution of
surrogate h values. To compute a p-value, we determine the proportion of surrogate h values
greater than the observed h value:

p = length(find(hS > h))/length(hS); %Compute p-value.

We find a p-value that is very small; there are no surrogate values of h that exceed the
observed value of h. We therefore conclude that in this case the observed value of h is
significant. As a statistician would say, we reject the null hypothesis of no CFC between
the phase of the 5–7 Hz low-frequency band and the amplitude of the 80–120 Hz high
frequency band.

Method 2 (advanced): A generalized linear model approach. The method described to
assess the relation between the phase (of the low-frequency activity) and amplitude (of the
high-frequency activity) is common in the neuroscience literature (as reviewed in [22]).
However, alternatives exist. Here, we outline a method based on the concept of a gener-
alized linear model (GLM). This method involves more advanced statistical concepts than
the phase-amplitude plot described in method 1. We discuss generalized linear models in
more detail in chapter 9. Here we only outline the highlights of a procedure to create a
GLM-CFC statistic. A more detailed description of this procedure, which includes many
simulated examples, may be found in [23].

The idea of the GLM-CFC statistic is to build a statistical model that describes the ampli-
tude (A) of the high-frequency signal as a function of the phase (�) of the low-frequency
signal. To create this model, we first assume a distribution for the amplitudes. We choose a
gamma distribution because the amplitudes are real and positive, and typically confined to
a limited interval with infrequent large events. We must then choose a function that links
the amplitudes to the phases. Here we choose the log link,

log(µ) = �X,

where µ is the expected value of the amplitudes, X is a function of the phases, and � are
the unknown model coefficients to determine. The number of coefficients depends on the
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model choice. The log link function is common for GLMs using a gamma distribution and
leads to models where predictors have multiplicative effects on the response.

We construct two GLMs to fit the amplitude A as a function of the phase �. In the first,
we assume that the amplitude does not depend on the phase; we label this the null model
because this model represents the null hypothesis of no CFC. In this case, X is a constant
and does not depend on the phase. We set X = 1, and there is a single unknown coeffi-
cient to estimate, which we label �0. Conceptually, the null model estimates the average
amplitude across all phases.

In the second model, which we label the spline model, we use cardinal splines to fit a
smooth function for the expected amplitude as a function of the phase. Cardinal splines
are smooth, piecewise-connected third-order polynomial functions that are defined by a set
of control points. The advantage of the cardinal spline is that it is capable of approximat-
ing any continuous functional relation between phase and amplitude with a small number
of parameters [24]. These parameters, the control points, are directly interpretable as the
expected amplitude at a specific set of phase values. The spline fit then smoothly interpo-
lates between the estimated control points.

To fit a spline model, we generate X by applying a set of cardinal spline basis functions
to the observed phase values, �, at each time step. We select a number of control points, n,
and space these evenly between 0 and 2⇡ . The value of the spline estimate at any phase is
determined by the two nearest control points to the left and the two nearest control points
to the right, where the control point values below zero or above 2⇡ are taken modulo 2⇡ .
In this way, the spline function is defined over the circular topology of phase values. We
must also select the tension parameter for the spline, which controls the curviness of the
function at the control points. Here we choose a tension parameter of 0.5, a standard choice.
In this case, X is a matrix consisting of n independent variables (the control points), and
therefore n unknown model coefficients to estimate, which we label �S. Exponentiating
these estimates represents the multiplicative effect of the phase on the expected value of
the amplitude envelope at each control point.

Principled methods exist to determine the number of control points (or knots) n in
the spline model (e.g., the Akaike information criterion (AIC); see [23]). An alternative
method for selecting the number of knots is to employ prior physical or observational
knowledge about the system. For example, if we believe that the amplitude increases at
one or two broad phase intervals, then we may choose to utilize 4 or 10 knots, respec-
tively, in the spline model. However, if instead we believe that the amplitude increases
in a sharp phase interval, then we may choose to utilize more knots (e.g., more than 10).
By selecting too few knots, we may fail to detect amplitude increases restricted to narrow
phase intervals, and by selecting too many knots, we may lose statistical power. In general,
by selecting the number of knots, we impose a class of models in the GLM-CFC proce-
dure, and we may do so using either quantitative techniques (e.g., AIC) or prior physical
knowledge about the system.
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After estimating the unknown coefficients �0 and �S of the two models, we then compute
the predicted values for the amplitude using the spline model (AS) and the null model (A0)
at 100 phase values evenly spaced between �⇡ and ⇡ . As a scalar statistic to characterize
the CFC we compute,

r = max
⇥
abs

⇥
1 � AS/A0

⇤⇤
, (7.5)

which is the maximum absolute fractional change between the spline and null models. This
statistic is therefore simply interpreted as the largest proportional (or percentage) change
between the null and spline models. A large value of r is indicative of CFC; when r is large,
the amplitude at some phase in the spline model differs from the constant amplitude of the
null model.

An advantage of this modeling approach is that we can use the GLM to generate
confidence intervalss for the statistic r. To do so, we use the estimated coefficients
�S to generate 10, 000 normally distributed samples of the coefficients (� j

S, where j =
{0, 1, 2, . . . , 10, 000}). For each j, we then compute the predicted values for the amplitude
using the spline model (Aj

S) and reestimate the amplitude for the null model (Aj
0) as the

mean of Aj
S. Finally, we compute the measure rj

S for each j. From the resulting distribu-
tion of rj

S, we determine the 0.025 and 0.975 quantiles. In this way, we use the surrogate
distribution to define the 95% confidence intervals for the statistic r.

The statistic r provides a single scalar value representative of CFC between the phase
and amplitude time series, and the associated confidence intervals provides a range of
certainty in the statistic. To visualize CFC, we plot the predicted amplitude as a function
of phase for the null and spline GLMs, and the pointwise 95% confidence bounds of the
predicted amplitude values for both models. This provides a graphical representation of the
differences between the two models; strong CFC at some phase results in large differences
between the two models.

To summarize, we measure CFC using the single quantity r in (7.5) with a corresponding
95% confidence intervals determined from the GLM. This measure represents the largest
deviation between the null model (which allows no variation in amplitude with phase) and
the spline model (which permits variation of amplitude with phase). To visualize CFC as
a function of phase, we plot both models with corresponding pointwise 95% confidence
intervalss.

To compute the GLM-CFC statistic in MATLAB, download the file GLM_CFC.m from

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

This file defines a MATLAB function to compute the GLM-CFC statistic. We provide as
input to this function the low-frequency signal, high-frequency signal, and the number of
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control points to use in the spline model. The function returns the statistic r and its 95%
confidence intervals. In MATLAB,

nCtlPts = 8; %Define no. of control points,
[r,r_CI]=GLM_CFC(Vlo,Vhi,nCtlPts);%...and compute r.

Here we have chosen to use eight control points, and analyzed the low- (variable Vlo) and
high- (variable Vhi) frequency signals, as defined, previously. The function returns for the
GLM-CFC statistic R = 1.73, with 95% confidence intervals

⇥
1.71, 1.76

⇤
.

In addition to returning the statistic r and its 95% confidence intervals, the function also
produces the plot in figure 7.8. Graphically, the approximately 173% maximal deviation
between the two models (corresponding to r = 1.73) is represented by the height of the
blue vertical line at a phase near 2 radians. The statistic r is quite large, with a 95% con-
fidence intervals that exceeds zero, in support of the conclusion that CFC occurs between
the chosen low- and high-frequency bands. We note that these results are consistent with
the conclusions from method 1 (the phase-amplitude plot) as well, which inspires further
confidence.
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Figure 7.8

GLM fits to high-frequency band amplitude as a function of low-frequency band phase. Fits of the null model
(black) and spline model (red). Means are solid curves; 95% confidence intervals are dotted curves, which remain
close to the means. Blue vertical line indicates largest difference between the two models.
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Summary

In this chapter, we considered techniques to characterize cross-frequency coupling (CFC),
associations between rhythmic activity observed in two different frequency bands. To do
so, we introduced the Hilbert transform, which can be used to compute the instantaneous
phase and amplitude of a signal. We focused on characterizing the relation between the
phase of low-frequency band activity (5–7 Hz) and the amplitude of high-frequency band
activity (100–140 Hz) using two approaches. In one approach, we computed the average
amplitude at each phase and determined the extent of the variability (or wiggliness). In the
other approach, we utilized the GLM framework to develop a statistical model of the data.

For the LFP data of interest here, we found evidence for CFC between the two frequency
bands using both methods. Importantly, these results also appear consistent with visual
inspection of the unfiltered data. Careful inspection of the example in figure 7.1 suggests
that CFC does in fact occur in these data. In general, such strong CFC, visible to the naked
eye in the unprocessed LFP data, is unusual. Instead, data analysis techniques are required
to detect features not obvious through visual inspection alone. Developing techniques to
assess CFC and understanding the biophysical mechanisms of CFC and implications for
function, remain active research areas.

In developing these approaches, we utilized expertise and procedures developed in other
chapters. In particular, we relied on the notions of frequency and power, amplitude and
phase, filtering, resampling, and generalized linear models. Such a multifaceted approach
is typical in the analysis of neural data, where we leverage the skills developed in analyzing
other datasets.

Problems

7.1. Load the file Ch7-LFP-2.mat available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. You will find two variables. The variable LFP corresponds to an LFP
recording. The variable t corresponds to the time axis, in units of seconds. Use these
data to answer the following questions.

a. Visualize the time series data. What rhythms do you observe? Do you detect evi-
dence for CFC in your visualizations?

b. Plot the spectrum versus frequency for these data. Are the dominant rhythms in
the spectrum consistent with your visual inspection of the data?

c. Apply the two CFC methods developed in this chapter to these data. In doing so,
you must choose the low-frequency and high-frequency bands. What choices will
you make, and why? What do you find using the two CFC methods?
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d. Describe (in a few sentences) your spectrum and CFC results, as you would to a
colleague or collaborator.

7.2. Load the dataset Ch7-LFP-3.mat available at

http://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

into MATLAB. You will find two variables. The variable LFP corresponds to an LFP
recording. The variable t corresponds to the time axis, in units of seconds. Use these
data to answer the following questions.

a. Visualize the time series data. What rhythms do you observe? Do you detect evi-
dence for CFC in your visualizations? Note: Look carefully at these traces.

b. Plot the spectrum versus frequency for these data. Are the dominant rhythms in
the spectrum consistent with your visual inspection of the data?

c. Apply the two CFC methods developed in this chapter to these data. In doing so,
you must choose the low-frequency and high-frequency bands. What choices will
you make, and why? What do you find using the two CFC methods?

d. Describe your spectrum and CFC results, as you would to a colleague or collabo-
rator.

7.3. Generate synthetic data consisting of Gaussian noise. More specifically, generate
100 s of artificial noise data sampled at 1000 Hz. Then compute CFC of these data.
To do so, use the low-frequency band of 5–7 Hz and the high-frequency band of
80–120 Hz. What do you expect to find (i.e., will this noisy signal exhibit CFC)?
What do you find?

7.4. In this chapter, we examined the relation between the phase of the low-frequency
band (5–7 Hz) and the amplitude of a selected high-frequency band (80–120 Hz)
and found strong evidence in support of CFC. Perhaps CFC occurs between other
frequency bands in these data. Repeat both methods of CFC analysis described, but
now consider the relation between the low-frequency band (5–7 Hz) and a second
high-frequency band of 40–60 Hz. What evidence do you find for CFC between these
two frequency bands?

7.5. In our computation of the GLM-CFC statistic for the LFP data analyzed in this chap-
ter, we fixed at 8 the number of control points in the spline model. Repeat the analysis
of the LFP data using different choices for the number of control points. How are the
results affected?

7.6. In our analysis of CFC, we focused on distinct choices of high- and low-frequency
bands. However, sometimes we would like to explore a broader range of poten-
tial cross-frequency interactions. To do so, we need a comodulagram. Use the code
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developed in this chapter to define a new function that computes a comodulogram.
Your comodulogram should have two axes:

a. x-axis: the phase frequency (e.g., 3 Hz to 12 Hz in 1 Hz steps)

b. y-axis: the amplitude envelope frequency (e.g., 50 Hz to 200 Hz in 10 Hz steps)

For each pair of (x-axis, y-axis) values, determine the statistic h (as defined in
method 1) and plot the three-dimensional results. For reference and motivation, con-
sider the comodulograms in [25].

Appendix: Hilbert Transform in the Time Domain

We have presented the Hilbert Transform in the frequency domain: it produces a quarter
cycle phase shift. It’s reasonable to consider as well the time domain representation of the
Hilbert Transform. To do so, let’s write the Hilbert Transform as

H(x) =

8
><

>:

�i x for positive frequencies of x

0 for 0 frequency of x

i x for negative frequencies of x

9
>=

>;
= x(f )

�
� i sgn(f )

�
,

where we have written x(f ) to make the frequency dependence of x explicit, and the sgn
(pronounced “sign”) function is defined as

sgn(f ) =

8
><

>:

1 if f > 0,
0 if f = 0,

�1 if f < 0.

In the frequency domain, we perform the Hilbert Transform by multiplying the signal x(f )
by a constant (either i or �i depending on the frequency f of x).

To convert the Hilbert Transform in the frequency domain to the Hilbert Transform in
the time domain, we take the inverse Fourier transform. Looking up the inverse Fourier
transform of �i sgn(f ), we find

Inverse Fourier transform{�i sgn(f )} = 1
⇡ t

.

Let’s represent the inverse Fourier transform of x(f ) as x(t).
Now, let’s make use of an important fact. Multiplication of two quantities in the fre-

quency domain corresponds to convolution of these two quantities in the time domain (see
chapter 4). The convolution of two signals x and y is

x ? y =
Z 1

�1
x(⌧ )y(t � ⌧ )d⌧ .



10234 007 2016/7/12 11:39 Page 215 #21

Investigation of Cross-Frequency Coupling in a LFP 215

So, in the time domain, the Hilbert Transform becomes

H(x) = x(t) ?
1
⇡ t

= 1
⇡

Z 1

�1

x(⌧ )

t � ⌧
d⌧ . (7.6)

This time domain representation of the Hilbert Transform is equivalent to the frequency
domain representation. However, the time domain representation is much less intuitive.
Compare (7.6) to the statement, “The Hilbert Transform is a 90-degree phase shift in the
frequency domain.” The latter, we propose, is much more intuitive.


