
CommeNt

Nature Reviews | Neuroscience

0123456789();:

Scientific research requires a diverse set of skills, includ­
ing performing statistical analyses, writing manuscripts
and, increasingly, developing software for experiment
design, testing theories and processing data sets. A 2014 UK
survey reported that 69% of researchers consider software
essential for their work and that 56% develop their own
software tools1. Particularly in neuroscience, the quantity
and complexity of data often make automated processing
tools essential for analysis. Most data published today have
been processed by software, including that used in imag­
ing pipelines, for sorting recorded neuronal spikes and for
model simulations. As of January 2021, about 1 in 5 PhD or
postdoctoral positions on the online FENS (Federation
of European Neuroscience Societies) Job Market expli­
citly reference ‘Python’, ‘MATLAB’ or ‘programming’.
Therefore, ensuring that neuroscientists follow good
coding practices is becoming increasingly important.

Mistakes in scientific software can have profound
impacts. In 2006, five manuscripts were retracted after
the authors found an issue in their custom code to ana­
lyse protein structure2. In 2016, a bug was detected in a
common fMRI analysis implementation, raising ques­
tions about the results of over 3,000 articles3. Cases
such as these have increased efforts to improve code
reproducibility4 (see Related links). For example, Nature
journals require availability statements, and some even
make code reproducibility integral to the review process
(see Related links). However, code readability, a different
yet equally important aspect of good practice, is often
neglected. Code is readable if others can easily understand
and modify it. With research software often written by
people without formal training in software engineering,
it is often accepted that writing scientific code need not
follow best practices, as long as it works5. This tolerance
has subtle implications that affect individual researchers,
research laboratories and the neuroscience community.
Here, we explain the benefits of code readability and what
individual researchers and the wider community can do
to improve code readability in neuroscience.

The value of readable code
The author understands code best at the time of first
writing it, and will update and rewrite it multiple times.
As every modification involves reading, the author is

also the primary reader of the code and the person to
benefit most from its readability6. With research projects
typically spanning many years, a focus on readability at
the time of writing saves time in the future, reducing
‘technical debt’.

Readable code also benefits lab colleagues and collab­
orators. Given the collaborative nature of science, code
initially written by one person is often used and further
developed by others. Poor readability has a cost: for
example, how often have manuscripts been delayed
because of hard-​to-​find bugs? How many emails have
been exchanged about data formats? How much time
has been spent rewriting an analysis from scratch
because the original author left the lab? Thus, lab heads
and project leaders should promote readable code from
the start. Readable code is more likely to be readily
corrected and to remain usable for longer.

Finally, readable code benefits the entire research
community. Software that originates as a tool for a speci­
fic project sometimes expands and becomes fundamen­
tal for new scientific discoveries. NEST, a simulator of
networks of neurons initially developed for a thesis, is
now credited in nearly 500 publications and has attracted
contributions from nearly 100 authors. Although not all
scientific software will become a community project, if
it does, its success relies on the ease with which it can be
modified and maintained.

What can researchers do?
Reuse existing code. Every new line of code costs time
and effort to write, test, debug and maintain. Reusing
existing code from lab colleagues or collaborators can
reduce this cost. Community and industry tools are also
very helpful and must be appropriately cited whenever
used (see Related links).

Often, existing tools solve the problem at hand
approximately but not exactly. In other cases, tools may
initially be suitable but become less so as the scientific
question evolves. Unlike hardware, software tools are
easy to modify. Community open-​source software, in
particular, provides an opportunity to extend and tailor
existing code. Contributing to community efforts also
alleviates the responsibility of maintaining code beyond
the lifetime of a scientific project.

Towards readable code in neuroscience
Juan Luis Riquelme   1,2 and Julijana Gjorgjieva   1,2 ✉

Code has become central to neuroscience, and the neuroscience community must take steps
to ensure its reproducibility and best coding practices. Improving code readability benefits
individual researchers and the wider neuroscience community.

1Computation in Neural
Circuits Group, Max Planck
Institute for Brain Research,
Frankfurt, Germany.
2School of Life Sciences,
Technical University of
Munich, Freising, Germany.

✉e-​mail: gjorgjieva@
brain.mpg.de

https://doi.org/10.1038/
s41583-021-00450-​y

	 volume 22 | May 2021 | 257

https://www.fens.org/News-Activities/Jobs/?pid=509%7C508&key=python%7Cmatlab%7Cprogramming
https://www.fens.org/News-Activities/Jobs/?pid=509%7C508&key=python%7Cmatlab%7Cprogramming
https://www.nest-simulator.org/publications/index.php
http://orcid.org/0000-0003-4604-7405
http://orcid.org/0000-0001-7118-4079
mailto:gjorgjieva@
brain.mpg.de
mailto:gjorgjieva@
brain.mpg.de
https://doi.org/10.1038/s41583-021-00450-y
https://doi.org/10.1038/s41583-021-00450-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41583-021-00450-y&domain=pdf

www.nature.com/nrn

0123456789();:

Break code down. Code is most readable when organized
into pieces that can be digested and understood indepen­
dently. These pieces are abstractions: concepts from
which unnecessary details have been removed. All pro­
gramming languages support abstractions through syn­
tactic constructs such as functions, methods, namespaces,
classes, modules and scripts. When used adequately, these
constructs enable future readers of the code to navigate it,
by understanding each individual piece’s concept,
function and interactions with other pieces of code.

Document code. Just as scientific protocols and pro­
gress must be recorded in lab notebooks, code must
too be documented. We highlight two essential tools:
annotation using comments and version control.

Making code readable does not require extensive
commentary. When code is carefully broken down, and
each piece is given a descriptive name, the code becomes
self-​documenting. Additionally, comments can support
abstractions by documenting inputs and outputs and
explaining their roles. Comments are most useful when
they provide context for the reader by describing how a
piece of code can be used, why it is necessary or why it
is implemented in a particular way. Literate program­
ming tools, such as Jupyter notebook and Markdown,
can complement traditional code comments.

Version control systems, such as Git, track changes
to code. Although fundamental for openly sharing code
and collaborating, they are also useful to individual users
because they allow reverting changes. As a scientific
project evolves and code undergoes multiple iterations,
reviewing the change history of code and reverting it
to previous versions whenever needed becomes invalu­
able. Further, the ability to restore previous versions libe­
rates the writer from the temptation of keeping old code
around, minimizing implementation clutter.

These are just a few suggestions for improving the
quality of scientific software. Many other good practices
and principles exist, including unit testing, test-​driven
development, continuous integration, software patterns
and pair programming6,7. Individual researchers can
engage with additional self-​learning resources and
improve their computational literacy through more
formal training.

What can the community do?
Multiple measures exist to ensure the quality of scienti­
fic manuscripts, including writing workshops, writing
mentorship from project leaders and detailed reviewer
feedback. Similarly, when a student needs to learn a
new lab technique, they may attend a summer school.
As code is fundamental to produce scientific results,
shouldn’t similar structures for quality assurance and
training exist for writing effective and readable code?

Early career neuroscientists often learn computa­
tional skills through self-​learning resources and infor­
mal interactions with colleagues. Although these
avenues are not to be disregarded, labs, institutions and
funding agencies can build other structures to provide
more thorough training and support. Code clubs are
a simple self-​organized format that can provide a sus­
tained pace to learn good coding practices8. They can

be interactive group reviews of existing code or tuto­
rials that introduce new techniques to the participants.
Some institutions also provide code clinics: one-​to-​one
sessions where computationally skilled researchers pro­
vide concrete advice on improving code. In addition,
online or in-​person workshops can be organized with
software companies and volunteer organizations, such as
The Carpentries7, and tailored to the participants’ level.
Initiatives like these are more likely to be embraced by
project leaders and institutions if appropriate funding
mechanisms are available.

The community must acknowledge the critical place
of code in the future of neuroscience and act to improve
coding practices. The first steps are already under­
way with an increased presence of ‘research software
engineers’ in research institutions and some journals
encouraging code reviews during peer review9. As this
recognition grows, training in code writing will likely
become commonplace.

Neuroscience has been rapidly advanced by methods
that have rendered it an impressively data-​rich field — so
rich that automated processing tools are now indispens­
able and ubiquitous. We must recognize the importance
of these tools and invest in their quality. Research can
only be as good as the tools we use for it. The road ahead
includes advancing the computational literacy and
good coding practices of neuroscientists at all levels,
from graduate students and established researchers to
academic institutions and scientific journals, and the
community as a whole.
1.	 Hettrick, S. It’s impossible to conduct research without software,

say 7 out of 10 UK researchers. Software Sustainability Institute,
https://software.ac.uk/blog/2014-12-04-its-​impossible-conduct-​
research-without-​software-say-7-out-10-uk-​researchers (2014).

2.	 Miller, G. A scientist’s nightmare: software problem leads to five
retractions. Science 314, 1856–1857 (2006).

3.	 Mumford J., et al. Keep calm and scan on. Organization for Human
Brain Mapping, https://www.ohbmbrainmappingblog.com/blog/
keep-​calm-and-​scan-on (2016).

4.	 Eglen, S., Marwick, B., Halchenko, Y. et al. Toward standard
practices for sharing computer code and programs in neuroscience.
Nat. Neurosci. 20, 770–773 (2017).

5.	 Singh Chawla, D. Critiqued coronavirus simulation gets thumbs up
from code-​checking efforts. Nature 582, 323–324 (2020).

6.	 Martin, R. C. Clean code: a handbook of agile software craftsmanship.
Pearson Education (2009).

7.	 Wilson, G. et al. Good enough practices in scientific computing.
PLoS Comput. Biol. 13, e1005510 (2017).

8.	 Hagan, A. K. et al. Ten simple rules to increase computational
skills among biologists with Code Clubs. PLoS Comput. Biol. 16,
e1008119 (2020).

9.	 Reviewing computational methods. Nat. Methods 12, 1099 (2015).

Acknowledgements
The authors gratefully acknowledge S. Eglen, J. Kirchner and G. Laurent for
helpful feedback.

Competing interests
The authors declare no competing interests.

Related links
FENS (Federation of European Neuroscience Societies) Job Market:
https://www.fens.org/News-​Activities/Jobs/?pid=509%7C508&key=python%
7Cmatlab%7Cprogramming
Git: https://git-​scm.com/
Guide for reproducible research: https://the-​turing-​way.netlify.app/
reproducible-​research/reproducible-​research.html
How to cite and describe software: https://www.software.ac.uk/
how-​cite-​software
Jupyter: https://jupyter.org/
Nature journals’ reporting standards and availability: https://
www.nature.com/nature-​research/editorial-​policies/reporting-​standards
NEST: https://www.nest-​simulator.org/publications/index.php
Research software engineers: https://researchsoftware.org/
The Carpentries: https://carpentries.org/

C o M M E N T

258 | May 2021 | volume 22	

https://jupyter.org/
https://git-scm.com/
https://carpentries.org/
https://researchsoftware.org/
https://researchsoftware.org/
https://software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.ohbmbrainmappingblog.com/blog/keep-calm-and-scan-on
https://www.ohbmbrainmappingblog.com/blog/keep-calm-and-scan-on
https://www.fens.org/News-Activities/Jobs/?pid=509%7C508&key=python%7Cmatlab%7Cprogramming
https://www.fens.org/News-Activities/Jobs/?pid=509%7C508&key=python%7Cmatlab%7Cprogramming
https://git-scm.com/
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://www.software.ac.uk/how-cite-software
https://www.software.ac.uk/how-cite-software
https://jupyter.org/
https://www.nature.com/nature-research/editorial-policies/reporting-standards
https://www.nature.com/nature-research/editorial-policies/reporting-standards
https://www.nest-simulator.org/publications/index.php
https://researchsoftware.org/
https://carpentries.org/

	Towards readable code in neuroscience

	The value of readable code

	What can researchers do?

	Reuse existing code.
	Break code down.
	Document code.

	What can the community do?

	Acknowledgements

