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Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring
phase-amplitude coupling between neuronal oscillations of different
frequencies. J Neurophysiol 104: 1195–1210, 2010. First published
May 12, 2010; doi:10.1152/jn.00106.2010. Neuronal oscillations of
different frequencies can interact in several ways. There has been
particular interest in the modulation of the amplitude of high-fre-
quency oscillations by the phase of low-frequency oscillations, since
recent evidence suggests a functional role for this type of cross-
frequency coupling (CFC). Phase-amplitude coupling has been re-
ported in continuous electrophysiological signals obtained from the
brain at both local and macroscopic levels. In the present work, we
present a new measure for assessing phase-amplitude CFC. This
measure is defined as an adaptation of the Kullback–Leibler dis-
tance—a function that is used to infer the distance between two
distributions—and calculates how much an empirical amplitude dis-
tribution-like function over phase bins deviates from the uniform
distribution. We show that a CFC measure defined this way is well
suited for assessing the intensity of phase-amplitude coupling. We
also review seven other CFC measures; we show that, by some
performance benchmarks, our measure is especially attractive for this
task. We also discuss some technical aspects related to the measure,
such as the length of the epochs used for these analyses and the utility
of surrogate control analyses. Finally, we apply the measure and a
related CFC tool to actual hippocampal recordings obtained from
freely moving rats and show, for the first time, that the CA3 and CA1
regions present different CFC characteristics.

I N T R O D U C T I O N

Neuronal oscillations of different frequencies can interact
with one another (Jensen and Colgin 2007). The interaction of
rhythms in different bands is commonly called “cross-fre-
quency coupling” (CFC) and has been reported in continuous
electrophysiological signals obtained at different levels, rang-
ing from local to more mesoscopic and macroscopic scales, as
assessed by intracellular, local field potential (LFP), electro-
corticogram, and electroencephalogram recordings (Bragin et
al. 1995; Canolty et al. 2006; Cohen 2008; Demiralp et al.
2007; Jensen and Colgin 2007; Kramer et al. 2008; Lakatos et
al. 2005; Young and Eggermont 2009). In one type of inter-
action, known as phase-amplitude coupling or nesting, the
amplitude of high-frequency oscillations is modulated by the
phase of low-frequency rhythms. Perhaps the best-known ex-
ample of this type of CFC occurs in the hippocampus, where
the theta (5–10 Hz) phase modulates the gamma (30–100 Hz)

amplitude (Bragin et al. 1995). Theoretical work suggests that
such theta–gamma nesting plays a role in sequential memory
organization and maintenance of working memory (Lisman
2005; Lisman and Idiart 1995).

Phase-amplitude coupling between neuronal oscillations has
been receiving increasing interest, with a recent outpouring of
papers in the last 5 years (Axmacher et al. 2010; Canolty et al.
2006; Cohen 2008; Cohen et al. 2009a,b; Demiralp et al. 2007;
Handel and Haarmeier 2009; Hentschke et al. 2007; Jensen and
Colgin 2007; Kramer et al. 2008; Lakatos et al. 2005, 2008;
Schroeder and Lakatos 2009; Tort et al. 2008, 2009; Wulff et
al. 2009; Young and Eggermont 2009). Phase-amplitude CFC
has been reported in species such as mice (Buzsáki et al. 2003;
Hentschke et al. 2007; Wulff et al. 2009), rats (Bragin et al.
1995), sheep (Nicol et al. 2009), monkeys (Lakatos et al.
2005), and humans (Axmacher et al. 2010; Canolty et al. 2006;
Cohen et al. 2009a,b), and in brain regions other than the
hippocampus, such as the basal ganglia (Cohen et al. 2009a;
Tort et al. 2008) and the neocortex (Canolty et al. 2006; Cohen
et al. 2009b; Lakatos et al. 2005). New evidence supports the
idea that this type of coupling presents a functional role in the
execution of cognitive functions (Axmacher et al. 2010; Cohen
et al. 2009a,b; Lakatos et al. 2008; Tort et al. 2008, 2009), in
accordance with theoretical models (Lisman 2005). In partic-
ular, phase-amplitude coupling has been suggested to be in-
volved in sensory signal detection (Handel and Haarmeier
2009), attentional selection (Schroeder and Lakatos 2009), and
memory processes (Axmacher et al. 2010; Tort et al. 2009).

Several methods exist for assessing phase-amplitude cou-
pling and no single method has been chosen as the gold
standard for detecting the phenomenon. The different measures
possess different advantages and limitations and may be used
to serve different purposes (see Cohen 2008 and present
results). Here, we describe in detail a measure that we have
used in recent publications for detecting phase-amplitude cou-
pling (Tort et al. 2008, 2009). We also show how this measure
compares with other measures and, based on the results, we
argue that the measure we propose has properties that make it
attractive for quantifying the intensity of the nesting. Finally,
we present a technique related to the measure—the phase-
amplitude comodulogram–which scans multiple frequency
pairs searching for CFC; as an example of its application, we
apply the tool to analyzing in vivo hippocampal recordings in
rats performing a cognitive task and we demonstrate that the
CA3 and CA1 regions may present different subbands of
gamma oscillations modulated by the theta phase.
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Federal University of Rio Grande do Norte, Natal, RN 59066, Brazil (E-mail:
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M E T H O D S

In this section we describe how our phase-amplitude CFC measure
is computed and the rationale for its definition. To be consistent with
previous reports (Tort et al. 2008, 2009), we call the measure the
modulation index (MI). The MI is able to detect phase-amplitude
coupling between two frequency ranges of interest: the “phase-
modulating” and “amplitude-modulated” frequency bands. We refer
to these two frequency bands as the phase (fp) and amplitude (fA)
frequencies, respectively. In the following text we describe the steps
required for the computation of the MI.

Amplitude and phase time series extraction and the
construction of the phase-amplitude plot

We denote by xraw(t) the raw signal (e.g., the unfiltered LFP). The
MI is calculated from a phase-amplitude distribution-like plot (Fig. 1),
which is obtained as follows.

1) First, xraw(t) is filtered at the two frequency ranges under analysis
(fp and fA). We denote the filtered signals as xfp

(t) and xfA
(t).

2) The time series of the phases of xfp
(t) [denoted as �fp

(t)] is
obtained from the standard Hilbert transform of xfp

(t). The Hilbert
transform is also applied to xfA

(t) to extract the time series of the
amplitude envelope of xfA

(t) [denoted as AfA
(t)]. The composite time

series [�fp
(t), AfA

(t)] is then constructed, which gives the amplitude of
the fA oscillation at each phase of the fp rhythm.

3) Next, the phases �fp
(t) are binned and the mean of AfA

over each
phase bin is calculated. We denote by �AfA

��fp
(j) the mean AfA

value at
the phase bin j.

4) Last, we normalize the mean amplitude �AfA
��fp

by dividing each
bin value by the sum over the bins

P( j) �
�AfA

��fp
( j)

�k�1
N �AfA

��fp
( k)

where N is the number of phase bins.1 Note then that the normalized
amplitude P has the same characteristics as a discrete probability
density function (pdf); that is: P(j) � 0 @j and �j�1

N P(j) � 1.
Although P is not defined from a random variable—in contrast to the
classical definition of a pdf—we will refer to this distribution-like
function as the “amplitude distribution.” The phase-amplitude plot is
obtained by plotting P as a function of the phase bin. In Fig. 1 we

1 We have been typically using N � 18, i.e., we bin the 0 to 360° interval
into eighteen 20° intervals. However, we note that in some circumstances a
higher number of bins might be desirable (e.g., when working with multimodal
distributions; see Fig. 13).
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FIG. 1. Steps in the computation of the phase-amplitude plot
and modulation index (MI). The raw signal (A) is filtered at the
phase (B) and amplitude (D, thin line) frequency ranges of
interest. Next the phase (C) and the amplitude (D, thick line)
time series are calculated from the filtered signals by using the
Hilbert transform. A composite phase-amplitude time series
(�fp

, AfA
) is then constructed and used to obtain the mean

amplitude distribution over phase bins (E; 2 cycles shown for
clarity). The MI is obtained by measuring the divergence of the
observed amplitude distribution from the uniform distribution.
See text for further details. LG, low-gamma (30–60 Hz).
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show this procedure outlined above for a synthetic signal using theta
as fp and low gamma (LG, 30–60 Hz) as fA.

Note that the intensity of the phase-amplitude coupling can be
already inferred by visual inspection of the phase-amplitude plot2;
however, it is desirable to extract a number out of a plot like this that
corresponds to the intensity of the coupling. This is what our MI
measure does, as explained in the following text.

Rationale for the definition of the modulation index

Note that if there is no phase-amplitude coupling between the pair
of frequencies (fp, fA) under study, the amplitude distribution P
(defined earlier) over the phase bins is uniform, i.e., on average, the
amplitude of fA is the same for all phases of the fp oscillation. The
existence of phase-amplitude coupling is characterized by a deviation
of the amplitude distribution P from the uniform distribution in a
phase-amplitude plot. Following this reasoning, we defined a measure
that quantifies the deviation of P from the uniform distribution. This
was achieved by an adaptation of the Kullback–Leibler (KL) distance,
a premetric that is widely used in statistics and in information theory
to infer the amount of difference between two distributions (Kullback
and Leibler 1951). The adaptation we performed was simply to make
the distribution distance measure assume values between 0 and 1. Our
MI is therefore a constant times the KL distance of P from the uniform
distribution.

In terms of equations, the KL distance of a discrete distribution P
from a distribution Q is defined as

DKL(P, Q) � �
j�1

N

P(j) log � P(j)

Q(j)�
The KL distance has the property that DKL(P, Q) � 0 and DKL(P, Q) �
0 if and only if P � Q, i.e., when the distributions are the same.

Notice that the KL distance formula resembles the definition of the
Shannon entropy (H) of a distribution P, which is given by

H(P) � ��
j�1

N

P(j) log [P(j)]

In fact, the KL distance is related to the Shannon entropy by the
following formula

DKL(P, U) � log (N) � H(P)

where U is the uniform distribution. Notice further that log (N) is the
maximal possible entropy value, which happens precisely for the
uniform distribution [when we have P(j) � 1/N for all bins j].
Therefore because H(P) � log (N), we defined our MI by dividing the
KL distance of the observed amplitude distribution (P) from the
uniform distribution (U) by log (N)

MI �
DKL(P, U)

log (N)

Therefore if the mean amplitude is uniformly distributed over the
phases (i.e., P � U, meaning lack of phase-amplitude coupling), we
have MI � 0; MI increases the further away P gets from U, as inferred
by the KL distance. An MI value of 1 happens if P is a Dirac-like
distribution, that is P(k) � 1 for a given bin k and P(j) � 0 for all bins
j different from k. This would denote an oscillation fA that just exists
in a single phase bin of fp and vanishes at the other phase bins.

In Fig. 2, we show the performance of the MI in assessing different
cases of phase-amplitude coupling, using theta-nested gamma as an
example. Note that the MI tracks the intensity of the coupling, as seen
more intuitively from the amplitude distributions.

Dependence of the MI on the data length

In this section we discuss the dependence of the MI on the length of the
signal. If a given brain signal is a perfect periodic function possessing no
noise component, the amount of phase-amplitude CFC can be inferred
from very short epochs of the data, as long as the �fp

(t) and AfA
(t) time

series are longer than a full cycle of the fp rhythm. However, given that
virtually all continuous signals recorded from the brain include a signif-
icant amount of noise, a natural question that arises is how long the
analyzed epoch should be to average out the noise component.

We have investigated this issue using synthetic LFPs in which we
could control the length of the signal and the intensity of noise while
preserving the amplitude envelope and all other parameters of the
LFPs (see the APPENDIX); this preserves what we intuitively think of as
the parameters that produce the CFC. Results of this analysis are
shown in Fig. 3. We ran 100 trials for each set of parameters under
study (epoch length and noise intensity); we found that longer epochs
led to smaller MI variation among trials, as inferred from the coeffi-
cient of variation (CV) (Fig. 3A). We also found that, in general, a
higher intensity of coupling is associated with lower CV for the same
epoch length (Fig. 3B). This means that strong coupling can be more
confidently inferred than weak coupling for short time epochs.

Note that even after defining an acceptable level for the variation in
the measurements (e.g., assuming that a reliable measurement is
associated with a CV of �10%), we are unable to recommend a
universal minimal epoch length to be used in all experimental settings
because the measurement is also dependent on the amount of noise
present in the signal (Fig. 3A), which may vary among different data
sets and laboratories. We also note that the minimal data length for a
reliable measurement is dependent on the fp frequency because slower
oscillations will have fewer cycles sampled than faster oscillations.
Using LFPs and studying theta as fp, we have been typically comput-
ing the MI for epochs �30 s (i.e., �200 cycles analyzed), since we
found this length long enough to provide us with a reliable measure-
ment in our experimental setting. We recommend that each laboratory
should perform its own control analysis to assess the minimal data
length providing a reliable measurement (we note that this issue
pertains to all CFC measures, not just the MI). In some cases,
however, the nature of the paradigm used does not allow long epochs
to be analyzed; to circumvent this, one can make use of surrogate
control analyses to evaluate whether the measured MI can be ex-
plained by random fluctuations in the signal or whether it denotes true
coupling: this is the topic of the next section.

Surrogate control analyses

When analyzing experimental results, a statistical control analysis
can be performed for a single MI value to infer whether the observed
value actually differs from what would be expected from chance.
Common in the analysis of neurophysiological data is the generation
of a chance distribution derived from the analysis of surrogate time
series that shares statistical properties with the original data (Hurtado
et al. 2004). To this end, the surrogate time series is usually obtained
from a trial shuffling procedure, although alternative methods also
exist.

In Fig. 4, we show an example of such control analysis applied to
an actual theta–LG phase-amplitude plot derived from in vivo LFP
recordings; these were recorded from the CA3 region of the hip-
pocampus while a rat was performing a task. For each trial of this task,
the rat is allowed to explore its current spatial context (to perform a
subsequent associative choice) and the resulting phase-amplitude plot
was constructed using 20 trials in a session where the animal learned

2 In this work, we do not define a particular CFC measure (among the ones
we review) as being the gold standard for assessing the level of phase-
amplitude coupling. Thus we often ask the reader to intuitively infer the level
of coupling by visual inspection either of the amplitude envelope or, equiva-
lently, of the phase-amplitude plots. In particular, in the present work, example
cases presenting identical phase-amplitude plots are said to possess the same
levels of phase-amplitude coupling.
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the task (for details on data acquisition and task design see Tort et al.
2009). We created shuffled versions of the [�fp

(t), AfA
(t)] time series by

associating the phase series [�fp
(t)] of trial k with the amplitude series

[AfA
(t)] of trial l, with k and l randomly chosen among the trial

numbers. We then generated 200 surrogate MI values, from which we
could infer the MI chance distribution. As shown in Fig. 4, the trial
shuffling procedure breaks the appearance of phase-amplitude cou-
pling, which is reflected by very low MI values (mean � 1.43 � 10�5,
SD � 1.12 � 10�5) compared with the measured MI value (88.29 �
10�5). Indeed, considering P � 0.01 as significant, we find that the
significance threshold lies on 4.30 � 10�5, much below the experi-
mental result. We can therefore conclude that there was real (above
chance) coupling between theta-phase and LG-amplitude in CA3
while the rat was exploring the arena in our paradigm.

As discussed earlier, the surrogate control analyses is particularly
important when assessing the MI of short data epochs because random
fluctuations of the signal could give rise to artifactual coupling. With
long data epochs, such as the one analyzed earlier, the noise influence
is less likely to affect the MI, since the noise component gets averaged
out from the phase-amplitude plot when a high number of cycles is
analyzed.

Comparison with other phase-amplitude coupling measures

In this section, we quickly review other phase-amplitude coupling
measures and compare their performances.

1) The heights ratio
A possible CFC measure is simply to compute the ratio

hmax � hmin

hmax

where hmax and hmin are the maximal and minimal amplitude heights,
respectively, inferred from the same phase-amplitude plot used to

compute the MI (Fig. 5A). We note that this measure has equivalent
variations such as the “modulation ratio” used by Lakatos et al. (2005)
defined by hmax/hmin, and also the ratio (hmax � hmin)/(hmax � hmin)
used in AM radio transmission, both of which provide qualitatively
similar results (not shown). We opted to use the heights ratio as
defined earlier because it is intuitive and bounded between 0 and 1.

2) The power spectral density of the amplitude envelope
As observed by Cohen (2008), the existence of phase-amplitude

modulation can be assessed by analyzing the power spectral density
(PSD) of the instantaneous amplitude time series AfA

(t) (Fig. 5B).
Notice that this measure has the advantage of fixing just the fA
frequency, whereas multiple fp can be analyzed simultaneously. The
occurrence of a peak in the PSD characterizes the existence of
phase-amplitude coupling between fA and the frequency band(s)
where the peak(s) occurred. The CFC intensity can be inferred by the
integral (or mean) power over the phase-modulating band. In the
examples depicted in Figs. 1, 2, and 5, the theta–LG coupling strength
is obtained by integrating the LG amplitude PSD over the theta band.

3) The mean vector length
Canolty et al. (2006) pointed out that a time series defined in the

complex plane by AfA
ei��f

p could be used to extract a phase-amplitude
coupling measure. In our example case of theta–LG coupling (Figs. 1
and 2), each instantaneous LG amplitude point is represented by the
length of the complex vector [i.e., the distance from the center (0, 0)],
whereas the theta phase of the time point is represented by the vector
angle. In the case of an absence of phase-amplitude coupling, the plot
of the AfA

ei��f
p time series in the complex plane is characterized by a

roughly uniform circular density of vector points, symmetric around
zero, because the AfA

values are on average the same for all phases �fp
.

If there is modulation of the fA amplitude by the fp phase, this means
that AfA

is higher at certain phases than others. This higher amplitude
for certain angles will lead to a “bump” in the complex plane plot of
the AfA

ei��f
p time series, leading to loss of symmetry around zero. This
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respectively. B: MI values for the 4 example cases shown in A.

Innovative Methodology

1198 TORT, KOMOROWSKI, EICHENBAUM, AND KOPELL

J Neurophysiol • VOL 104 • AUGUST 2010 • www.jn.org

 on A
ugust 28, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


loss of symmetry can be inferred by measuring the length of the vector
obtained from the mean over all points in the complex plane. It is thus
assumed that a symmetric distribution as it occurs during lack of
coupling leads to a small mean vector length (because the points in the
different phases would cancel each other), whereas the existence of
coupling leads to a larger mean vector length (as the points in the
“bump” would prevail over the others; see Fig. 5C).

4) The phase-locking value
Penny et al. (2008) and Cohen (2008) recently described new

phase-amplitude CFC measures. One of these proposed measures has
been named the phase-locking value (PLV) and is defined by PLV �

��exp[i(�fp
� �AfA

)]��, where �AfA
is the phase time series of the

amplitude envelope (see Fig. 6), � · � denotes the mean over all time
points, and � · � calculates the length of the mean vector. By its definition,
this measure provides the value of 1 whenever the phase series are locked
and 0 if they are completely desynchronized (for a sufficiently large
number of time points) and it constitutes a useful measure for detecting
phase-amplitude coupling.

5) The correlation coefficient
Another measure reviewed by Penny et al. (2008) is based on the

assessment of the correlation between AfA
and fp [or its normalization,

defined by cos (�fp
)]
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rESC � Corr (fp, AfA
)

where ESC stands for envelope-to-signal correlation. In Fig. 7 we
show some examples of scatterplots between fp and AfA

.
6) The general linear model
As observed by Penny et al. (2008), the correlation coefficient

measure described earlier has the deficiency of being influenced by
the phase of the coupling. In particular, as shown in Fig. 7A, notice
that this measure is not able to detect coupling at �/2 phase-difference
between the fp and AfA

. To circumvent this, Penny et al. (2008) created
a new measure based on a general linear model (GLM); this measure
is basically a generalization of the correlation coefficient measure that
is able to detect phase-amplitude coupling at all phase lags (for details
see Penny et al. 2008).

7) The coherence value
More recently, Colgin et al. (2009) used a phase-amplitude CFC

tool based on the coherence spectrum between AfA
and the original

signal xraw(t). This method is based on the same principle as the PLV
measure, although it uses a different tool for assessing the level of
phase-locking. As in the case of the amplitude PSD, a coupling
measure can be defined by integrating the coherence levels over the
phase-modulating band (Colgin et al. 2009).

R E S U L T S

Performance comparison

Recent reports have suggested that the intensity of the
phase-amplitude coupling may change depending on cognitive
demands (Tort et al. 2008) and performance (Tort et al. 2009);
it is thus desirable to have a metric that is able to assess the
magnitude of the coupling (cf. Fig. 2), in addition to detecting

its existence. As we will show in the following text, the
principles underlying four of the CFC measures reviewed
earlier make them potentially not suitable for measuring CFC
intensity, although these measures may present a positive
correlation with coupling strength in a realistic scenario where
noise is present in the system.

Accordingly, the measures that are potentially not suitable to
properly track the intensity of the coupling are the last four
reviewed earlier: the two measures based on the levels of
phase-locking between AfA

and fp (the PLV and the coherence
value) and the two measures based on the linear regression
between AfA

and fp (the correlation coefficient and the GLM).
The explanation for the first case is the following: notice that
different levels of phase-amplitude coupling can occur for the
same level of phase-locking; the �AfA

time series will be exactly
the same, irrespective of the magnitude of the variation in the
levels of the amplitude envelope AfA

if the level of phase
locking is the same. For instance, if AfA

varies (phase-locked to
fp) between its maximal value and 90% of its maximal value or
between the maximal value and 50% of its maximal value, the
�AfA

series will be similar in both cases, varying from 0 to 360°
(see Fig. 6). Therefore in principle, neither the PLV nor the
coherence value—which depend essentially on phase-lock-
ing—can properly distinguish different levels of phase-ampli-
tude coupling.

The two measures based on linear regressions are also
potentially not suitable to assess different levels of coupling
because the linear correlation between two variables X and Y is
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the same as between X and C � Y � D, where C and D are
multiplicative and additive constants, respectively; notice that
D corresponds to a fixed fraction of the amplitude envelope
that does not vary and that different levels of coupling are
reflected by different D values and regression slopes (C),
which do not change the correlation/regression coefficient (see
Fig. 7B).

In Fig. 8 we show the results obtained for the eight
measures during the analysis of similar phase-amplitude
coupling cases as in Fig. 2. For the same cases of coupling
strength (as seen from the distributions shown in Fig. 8A),
we have analyzed the performance of the measures under
two situations differing on the presence or not of noise in the
synthetic LFP. In a situation without noise (Fig. 8B), we
confirmed the earlier claims that none of the measures based
on the assessment of linear regression or coherence between
AfA

and fp correlates well with the CFC intensity (Fig. 8B,
top row). On the other hand, all the other measures (i.e., the
heights ratio, the mean vector length, and the amplitude
PSD) were able to correlate with the magnitude of the CFC,
similarly to the MI (Fig. 8B, bottom row).

When analyzing synthetic LFPs with noise (the amplitude
distributions of these cases are similar to Fig. 8A, since the
noise gets averaged out), we then obtained that all measures,
including the regression- and coherence-based measures, were
able to track the intensity of the coupling (Fig. 8C). That is,
although in principle four measures would not be able to
correlate with CFC intensity, they end by doing so in a more
noisy, realistic scenario. The reason for this is that higher levels
of CFC intensity usually present a higher signal-to-noise ratio,
being more easily identified than weaker cases of CFC. This is
translated into a better linear regression/coherence between AfA

and fp, explaining why the four measures discussed earlier are
able to track coupling strength in the presence of noise despite
the limitations intrinsic to their definition (Figs. 6 and 7).

To explore this matter further, we have assessed the toler-
ance of the CFC measures to random fluctuations by increasing
the white noise level of our synthetic signal. The results of this
analysis are shown in Fig. 9. As expected, we found that all
regression- and coherence-based measures are very sensitive to
noise and the values they provide present a clear negative
dependence on noise level (Fig. 9, top row). We also found that

all the other measures but the amplitude PSD present a good
tolerance to noise (Fig. 9, bottom row).

We next increased the amplitude of the LG oscillation in our
synthetic LFP, while maintaining the level of coupling, and we
verified that the mean vector length and the amplitude PSD
measures are dependent on the absolute amplitude level of the
amplitude-modulated band (Fig. 10; see also Fig. 11 for an
intuitive explanation of this dependence). Although the regres-
sion- and coherence-based measures are insensitive to different
levels of absolute amplitude in a situation without noise (Fig.
10C), they do present a clear positive dependence on the
absolute amplitude when noise is present in the LFP (Fig.
10D); this result is readily explained by the fact that larger
amplitudes are associated with a higher signal-to-noise ratio
(cf. preceding discussion). Only the MI and the heights ratio
measure turned out to be completely independent on the
absolute level of the amplitude-modulated band (Fig. 10).

We also tested whether these measures would be able to
detect the “width” of the modulation. As exemplified in Fig. 12A, the
amplitude peak as a function of the phase can have different
widths, even for the same values of maximal and minimal
amplitudes. We found that the MI and the amplitude PSD seem
more suitable for detecting these effects, followed by the mean
vector length analysis (Fig. 12B). Clearly, the heights ratio
measure is unable to detect these effects by its very definition.
We also found that the regression- and coherence-based mea-
sures do not perform well in detecting the modulation width
(not shown).

Finally, we tested the ability of these CFC measures in
detecting multimodal amplitude distributions. We note that,
by their definitions, the regression- and coherence-based
measures do not perform well in cases of multimodality (as
also observed by Penny et al. 2008) and we have therefore
focused our analysis on the other measures. As shown in
Fig. 13, the heights ratio measure always assumes the same
value, irrespective of the existence of multimodality, as
expected from its definition. The mean vector length and the
amplitude PSD measures were unable to detect symmetric
multimodal distributions (Fig. 13A) (the PSD detects a cou-
pling at twice the theta frequency in our example case).
However, the latter two measures were able to detect phase-
amplitude coupling in nonsymmetric cases of multimodality
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A          B

FIG. 6. Assessing the phase-locking between the amplitude
envelope AfA

and fp. A, top panels: shown are a synthetic local
field potential (LFP) example, along with the signal filtered at
theta and gamma ranges bottom traces. The amplitude envelope
(AfA

) of the gamma filtered signal is also shown (thick line).
Bottom panels: phase time series of theta (top) and gamma
amplitude (bottom). B: same as before but for a case with
stronger phase-amplitude coupling (as judged by the amplitude
envelope). Notice that the phase-time series of the amplitude
envelope is identical to the previous case and thus the levels of
phase-locking to the fp rhythm are the same. Therefore CFC
measures dependent on the level of phase-locking between AfA
and fp are, in principle, potentially not able to track CFC
intensity (for better clarity of the proof of principle, no noise
was added to the synthetic signals shown in this figure).
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(Fig. 13B). On the other hand, the MI measure was able to
detect both symmetric and asymmetric cases of multimodal
distribution, and its values were sensitive to the different
cases studied (Fig. 13).

Based on the summary of these findings presented in Table 1, we
conclude that the MI has some properties not shared by other
measures that make it well suited for assessing the intensity of
phase-amplitude coupling.

Phase-amplitude comodulogram

Although the MI measure is able to examine only two fre-
quency ranges at a time [i.e., an (fp, fA) pair], it can be used to
construct a phase-amplitude comodulogram plot, a tool that si-
multaneously reports the level of coupling among multiple bands.
The comodulogram is obtained by scanning frequency band pairs
and applying the CFC measure to each one of them. Although
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and fp do not, in principle, correlate well with its
intensity (for better clarity of the proof of principle, no noise was added to the synthetic signals shown in this figure).
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computationally expensive, this analysis is ideal for searching for
phase-amplitude couplings when no a priori assumptions are
made about the phase-modulating (fp) and the amplitude-modu-
lated (fA) frequency bands. The results are described using a
pseudocolor plot that indicates the level of coupling between
several narrowed-filtered frequency bands pairs. Typically, the
abscissa represents the frequencies analyzed as fp, whereas fA is
represented in the ordinate axis; that is, hot colors in a given
coordinate (x, y) of the bidimensional map indicate that the phase
of the x frequency modulates the amplitude of the y frequency.

In Fig. 14 we show an example of application of the
comodulogram plot to actual in vivo hippocampal recordings.
The comodulograms shown in this figure were constructed by
using fp calculated in 2 Hz steps with 4 Hz bandwidths and fA
in 5 Hz steps with 10 Hz bandwidths.3 The data set analyzed
and the task used are the same as those used earlier (for details,

3 That is, the fp ranges studied were [0 Hz, 4 Hz], [2 Hz, 6 Hz], [4 Hz, 8 Hz],
and so forth, whereas the fA ranges were [10 Hz, 20 Hz], [15 Hz, 25 Hz], [20
Hz, 30 Hz], and so forth. The centers of these intervals correspond to
coordinates in the comodulogram plot.
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see Tort et al. 2009). The comodulogram analysis was able to
confirm the previously described (Bragin et al. 1995) theta-
phase modulation of the amplitude of oscillations in the gamma
range in the hippocampus during exploration (Fig. 14). In
addition, this analysis showed that theta-phase modulated more
the low-gamma (LG, 30–60 Hz) subband in the CA3 region,
whereas the high-gamma (HG, 60–100 Hz) subband was more
modulated in CA1 (Fig. 14). Use of a common theta-phase
signal (from a fissure electrode) indicated that the peak of CA1
HG amplitude precedes the peak of CA3 LG (Fig. 14). This
result therefore suggests for the first time different CFC char-
acteristics between the CA3 and CA1 regions, while also
questioning a monolithic definition for the gamma range as
frequencies from 30 to 100 Hz. This example shows that new
phase-amplitude CFC tools, such as the MI, and related tech-
niques, such as the comodulogram, are able detect features
about the brain rhythms that are blind to such standard tools as
the Fourier analyses.

D I S C U S S I O N

We have presented a measure for assessing CFC of the
phase-amplitude type. This measure (called MI) is defined as
an adaptation of the KL distance, a function used to infer the
distance between two distributions. Essentially, the MI is
obtained by measuring the distance of an empirical amplitude
distribution-like function over phase bins from the uniform
distribution, which characterizes the absence of phase-ampli-
tude coupling. We performed comparisons of the MI with other
CFC measures and we showed that, by some performance
benchmarks, the MI is well suited for assessing the intensity of
the coupling. Finally, we have applied the MI and related
techniques to actual hippocampal recordings obtained from
freely moving rats; these tools were able to detect previously
described theta–gamma nesting in the hippocampus and also
revealed characteristics about this coupling that were not
known before.

Phase-amplitude coupling among brain rhythms has been
receiving increasing interest, particularly because new findings
are starting to link this phenomenon to the execution of
cognitive functions (see INTRODUCTION). Along with the growth

of interest in phase-amplitude CFC, there was a parallel devel-
opment of new tools for studying these effects. In the present
work, we have discussed eight tools (including ours) that were
recently developed. The different tools are based on different
principles and thus each tool is suited to a specific purpose. For
instance, the method devised by Cohen (2008) is strong at
detecting transient coupling in short time epochs. Other mea-
sures, such as the heights ratio and the amplitude PSD, possess
the advantage of being straightforward, which is likely to help
convince readers of the findings reported.

A main limitation of the heights ratio measure, however, is
that it takes into account only the amplitude information
present in two phase bins (those with the maximal and minimal
heights) while discarding the mean amplitude values in the
other phase bins. This measure is thus unable to detect the
width of the modulation; that is, for the same maximal and
minimal heights, there can be a narrow or a wide modulation
around the maximal height (Fig. 12). This measure will also
not distinguish unimodal from multimodal cases of phase-
amplitude coupling as, for instance, in a biphasic amplitude
distribution (Fig. 13).

The amplitude PSD, on the other hand, turned out to be very
sensitive to noise (Fig. 9). This sensitivity is readily explained
if one considers that adding white noise to a signal is equiva-
lent to adding a constant value to its PSD. In fact, the amplitude
PSD has the important caveat of depending on the absolute
amplitude of fA: for the same level of phase-amplitude coupling
(as inferred by the heights ratio, for instance), the integral of
the PSD will be higher for higher fA amplitudes (Figs. 10 and
11). This caveat also hinders the comparison of CFC intensities
among different bands because the different rhythms [e.g., low
(30–60 Hz) and high (60–100 Hz) gamma] have different
amplitudes, usually following a 1/f law. We found that nor-
malizing and expressing the PSD as relative power (or “%
Power”) makes it an inefficient phase-amplitude coupling mea-
sure for the purpose of quantifying the CFC intensity, although
the normalized PSD is still able to detect the presence of
coupling (not shown).

We also make two observations about the mean vector
length measure: 1) a “small” or “large” mean vector length is
a relative concept that depends on the fA amplitude. For
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FIG. 9. Influence of noise level on the coupling measures.
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instance, during the same presence (or absence) of coupling,
the mean vector length will be higher for a higher fA amplitude
(Fig. 10). In other words, like the amplitude PSD measure, the
mean vector length is also dependent on the absolute amplitude
of the fA rhythm (Figs. 10 and 11). This caveat, however, can

be circumvented by working with normalized mean vector
length measures, as performed by Canolty et al. (2006). 2) This
measure provides low values when the AfA

ei��f
p time series is

symmetric in the complex plane, as happens during the absence
of coupling. However, a bimodal distribution of amplitude
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FIG. 10. Influence of the absolute amplitude of the amplitude-modulated band on the coupling measures. A and B: 3 cases of identical coupling strength, but
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modulation can also produce cases that will not be detected by
this measure (e.g., if the LG amplitude has two symmetric local
maximums, one at the theta phase of � and another at � � �,
then the two amplitude “bumps” will mutually cancel each
other in the mean vector analysis).

We have reviewed two measures based on linear regression
and two measures based on the levels of phase-locking be-
tween AfA

and fp (i.e., the correlation coefficient, the GLM, the
PLV, and the coherence value, respectively). We showed that
something curious happens with these four measures: although
in principle (see Figs. 6 and 7) they should not be able to
correlate with CFC intensity, they do present a positive corre-
lation with CFC intensity in a realistic, noisy scenario. In fact,
we have applied these measures to actual hippocampal LFP

recordings, in which we have previously found increased
theta–gamma coupling with learning (Tort et al. 2009), and we
observed that these measures, similarly to the MI, were also
able to track changes in CFC intensity (not shown). We
concluded that differences in the signal-to-noise ratio associ-
ated with different coupling strengths likely underlie these
effects. Consistent with this, we found that these measures are
very sensitive to the levels of noise present in the signal (Fig.
9). Moreover, we found that these measures depend on the
absolute amplitude of fA in the presence of noise (Fig. 10);
again, this dependence is likely explained by the fact that a
higher fA amplitude is associated with a higher signal-to-noise
ratio. In light of these observations, we recommend care when
analyzing results derived from the use of these techniques.
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Recent reports have suggested that the strength of the phase-
amplitude coupling may change depending on cognitive demands
(Tort et al. 2008). It is therefore desirable to have a metric that
correlates well with the intensity of the coupling. As we have
stressed when reviewing the coupling measures, there is a differ-

ence between being able to detect the phenomenon and to corre-
late with its intensity. We have devised our MI as a measure that
is able to both detect and quantify the intensity of the coupling.
We have relied on statistics and information theory to select a
function that seemed suitable for this purpose: the KL distance.
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Although our measure is less intuitively understood, we believe
this disadvantage is compensated by its performance (Table 1).

However, it should be remarked that we have here mainly
studied the ability of these CFC tools in tracking the intensity
of the coupling, as intuitively inferred by the visual inspection
of phase-amplitude plots; although this parameter is of interest
since it has been related to cognitive functioning (Tort et al.
2008, 2009), we note that this is a particular definition of “CFC
intensity,” among others possible. Depending on the research
protocol, one may be more interested in tracking the coherence
between the amplitude envelope AfA

and the phase-modulating
rhythm fp, irrespective of the magnitude of the variations in AfA

.
In this case, both the coherence value and the PLV measures
would be more appropriate measures than the MI. It should
also be noted that the MI loses time information and it cannot
tell us whether the coupling occurred during the whole epoch
being analyzed or whether there occurred bursts of coupling
inside the epoch. On the other hand, measures based on the
coherence or the regression between AfA

and fp can give us a
better idea of how consistent the coupling was in the whole
epoch. Similarly, other CFC measures can be better suited than
the MI for assessing other particular aspects of the data;
assessing the CFC intensity—as defined in this work—is just
one particular feature that can be studied in these signals.

We believe that the use of these new CFC tools should give
rise to significant new findings in the coming years. In the
present report we have provided an example of this, by show-
ing that the CA3 and CA1 regions can have different subbands

of gamma modulated by theta phase. Previously, we also
reported novel high-frequency oscillations (HFOs) in the hip-
pocampus that were detectable only by means of CFC analy-
ses, and we showed that the amplitude of HFO and gamma
oscillations can peak at different phases of theta (Tort et al.
2008). Such CFC tools give clues to the physiological under-
pinnings of the dynamics and should facilitate the understand-
ing of both the biophysical origins and the functions of brain
dynamics.

Historical notes, new and classical references

References relevant to the MI measure include the classical
paper by Shannon (1948) and the pioneer work by Kullback
and Leibler (Kullback and Leibler 1951; see also Kullback
1959, 1987). More information on the Kullback–Leibler dis-
tance can be found in standard textbooks of statistics and
information theory, as well as in science encyclopedias online.

To the best of our knowledge, the MI equation that we used
was applied for the first time to neuroscience research by Tass
et al. (1998). In this work, the authors applied this index to
measure the divergence of phase-difference distributions from
the uniform distribution. Therefore under their protocol, this
measure was applied as a phase–phase coupling measure. The
use of MI as a phase-locking measure has been reviewed by Le
Van Quyen et al. (2001), Hurtado et al. (2004), and Young and
Eggermont (2009) among others. The first application of the
MI as a phase-amplitude coupling measure was done in Tort et

TABLE 1. Summary of characteristics of the phase-amplitude coupling measures studied

Phase-Amplitude Coupling Measure Tolerance to Noise Amplitude Independent Sensitivity to Multimodality Sensitivity to Modulation Width

Modulation index Good Yes Good Good
Heights ratio Good Yes No discrimination No
Mean vector length Good No Restricted Reasonable
Amplitude PSD Low No Restricted Good
Phase-locking value Low No* Restricted Low
Correlation measure Low No* Restricted Low
GLM measure Low No* Restricted Low
Coherence value Low No* Restricted Low

* Under the presence of noise.
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al. (2008), in which phase–amplitude distributions were ana-
lyzed. Notice that because the MI is essentially a measure of
distance from a uniform distribution, it has a wide applicabil-
ity. What makes the MI specific to phase–phase coupling, or
phase–amplitude coupling, or to any other effect under study,
is the nature of the distribution being analyzed.

Analyses of multiple frequency pairs and expression of the
results of a phase-amplitude CFC measure as a single bidimen-
sional color map (the “comodulogram”) was previously per-
formed in Canolty et al. (2006) and Colgin et al. (2009) for
their respective coupling measures and in recent work of ours
(Tort et al. 2008, 2009) for the modulation index described
here.

A P P E N D I X

Our synthetic signal was modeled as4

xraw(t) � AfA
(t) sin (2�fAt) � Afp

sin (2�fpt) � W(t)

where W(t) is a Gaussian white noise process of variance �2 and A
�

fp

is a constant determining the amplitude of fp. In our simulations, the
amplitude envelope AfA

(t) of the “amplitude modulated” rhythm as-
sumed different shapes, according to the different cases studied. In the
cases of unimodal distribution, the amplitude envelope was defined as

AfA
(t) � AfA

(1 � 	) sin (2�fpt) � 1 � 	

2

where A
�

fp
is a constant that determines the maximal amplitude of fA

and 	 � [0, 1] is the fraction of the amplitude envelope that is not
modulated by fp; the parameter 	 thus controls the intensity of the
coupling (notice that 	 � hmin/hmax in the phase-amplitude plot; see
Fig. 5A).

For studying the width of the modulation, the amplitude envelope
was modeled as follows

AfA
(t) � AfA

�(1 � 	)g(fp, t) � 	�

where g : �� � �� ¡ [0, 1] is a normalized Gaussian function
defined by

g(fp, t) �

�s(fp, t)� � min �
(s)�
max �
(s)� � min �
(s)�

where 
 denotes a normal distribution function with zero mean and
variance �̂2 and s(fp, t) is a sawtooth wave of frequency fp. The width
of the modulation can therefore be controlled by varying �̂2.

The modeling of multimodal phase-amplitude distributions was
done by using a mixture of Gaussian functions defined similarly as
before, but presenting different phase lags in the sawtooth wave.

The MATLAB scripts used to compute the phase-amplitude plots
and the MI can be obtained on request to the authors.
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