Perceptron

Instructor: Mark Kramer

Part 1 A Discrete Neuron: The Perceptron

Today

We'll begin to study neural networks:

-The simplest case: The Perceptron.

Neural models

. . . can be extremely complicated:

multi-compartment models

A neuron, conceptually

Conceptually, a neuron:

- -receives inputs
- -processes those inputs
- -generates an output.

In practice, it's really complicated ...

[Economo et al, Nature, 2018]

Neural network models

Here, we'll simplify.

Consider **neural networks**: collections of abstracted neurons connected to each other through weighted connections (simplified "synapses").

Q: What's been lost here?

Neural network models

Neural networks can be more complex ...

Networks can <u>adapt</u> their behavior by adjusting edge weights.

We'll talk more about this ...

The "simplest" information processor

The Perceptron

-the simplest neural network possible: a single neuron

Three elements:

Feed-forward model progresses from left to right

input comes in, gets processed, output goes out

The "simplest" information processor

Divide information processing into <u>4 steps</u>:

- 1. Receive inputs
- 2. Weight inputs
- 3. Sum weighted inputs
- 4. Generate output

Let's go through each step, in a concrete example ...

4 steps of information processing (Step 1)

Step 1. Receive inputs.

Example: a perceptron with two inputs.

Let's define: $input_1 = 12$ $input_2 = 4$

4 steps of information processing (Step 2)

Step 2. Weight inputs.

Each input sent to the neuron is **weighted**

= multiplied by some number.

```
Example: Let's define: w_1 = 0.5
w_2 = -1
```

Now, "weight inputs": multiply each input by its weight.

input₁ * w₁ =
$$12 * 0.5 = 6$$

input₂ * w₂ = $4 * -1 = -4$

4 steps of information processing (Step 3 & 4)

Step 3. Sum weighted inputs

 $input_1 * w_1 + input_2 * w_2 = 6 + (-4) = 2$

Step 4. Generate output.

Q: How?

A: Pass the summed weighted inputs through an activation function

If the summed weighted input is "big enough", then "fire".

Different choices here ... we'll consider different options.

The Perceptron Algorithm

Summary:

1. For every input, multiply that input by its weight.

2. Sum all of the weighted inputs

3. Compute the <u>output</u> of the perceptron based on that sum passed through an activation function.

(we'll discuss these later)

The "simplest" information processor: more generally

<u>Summary</u>: the neuron performs a **weighted addition** of its input. The sum is then run through an **activation function** to produce output which can then act as input to other neurons.

To start, let's assign <u>variable names</u> to each model element:

The perceptron: more generally

The activity of the neuron depends on the summed, weighted inputs.

In the <u>simplest case</u>:

The perceptron: more generally

The **output** of the neuron is a function of the activity of the neuron (x):

In general,

$$output = f(x)$$

Here: $\begin{array}{l} output = 0 \ \text{for } x \leq 0 \\ output = 1 \ \text{for } x > 0 \end{array}$

The activation function is **binary** (0 or 1).

Bias term

We can modify the model by adding a **bias** term:

Now the activity for the neuron becomes:

$$x = \sum_{i} input_{i} w_{i} + \theta$$
 new bias term

Bias term

Q: What is the effect of a <u>negative</u> bias term θ ?

For the neuron to generate output: x > 0 (Then *output* = 1)

To compensate for the negative bias term θ , the total input must <u>increase</u> to push the x above zero.

In other words: we need more input to make the neuron produce output.

The perceptron with bias term

So, the neuron model with bias:

$$x = \sum_{i} input_{i} w_{i} + \theta \quad \text{and} \quad bias$$

Ex. input₁ w_1 w_2 output input₂ w_2 θ

Q: What is *output*? $x = input_1 w_1 + input_2 w_2 + \theta_j$ x = 1*0.5 + 0*(-0.5) - 1 = -0.5 binary activation function output = 0 for $x \le 0$ output = 1 for x > 0

Inputs to the neuron: $input_1 = 1$ $input_2 = 0$ Synaptic weights: $w_1 = 0.5$ $w_2 = -0.5$ Bias: $\theta = -1$

x < 0 so output = 0

The perceptron: application

The neuron model can perform <u>logical operations</u>: **Q**: What logical operations can we perform?

Consider:

Make a table:

<u>Note</u>: output = 1 if both $input_1$ and $input_2$ provided.

InputOutputinput_1input_2output

0	0	
1	0	
0	1	
1	1	

A: ?

More complicated neural models

Single neuron models can become more complicated:

Different activation functions

More complicated neural network models

Neural network models can become <u>much more complicated</u>:

Neural network models

Summary:

• A neural network is a collection of abstracted neurons connected to each other through weighted connections ("synapses").

• Learning: A neural network learns by adjusting the strengths of the weights.

Perceptron

Instructor: Mark Kramer

Part 2 Teaching the Perceptron

Now

We'll continue to study neural networks:

- -The simplest case: the Perceptron.
- -Simple pattern recognition

Challenge

Consider these data:

0.9062	-0.6623	1.0000			
0.8555	-0.8467	1.0000	New da	ta	
1.9104	-0.5956	0		la	
0.7769	-2.3029	0	1.4134	-1.8730	?
2.5611	-1.2519	0	1.6706	-0.7096	?
0.8517	-0.2829	1.0000	0.3063	-1.4071	•
1.1616	-1.9551	0	1.3779	-1.8003	•
1.7382	-0.8326	0	0.8425	-1.3501	?
2.1395	-0.8733	0	1.0038	-0.1407	•
1.0997	-0.4400	1.0000	3.2511	-0.7492	-
3.1965	0.1410	0	-0.7264	0.3050	•
1.8313	-1.0591	Ø	0.1882	1.4591	٠
1.3909	-1.6422	0	2.3571	-1.7109	
0.1271	-1.6632	0	• 41	•	
0.4838	-0.8297	1.0000	input I	input 2	
1.1555	-0.2390	1.0000			
input 1	input 2	output = $\{0, 1\}$			

Perceptron: a classifier

Let's examine a perceptron in action ...

Specifically, let's use a perceptron to **classify** some data.

Perceptron: a classifier

Consider a line:

In this space, points are either "above" or "below" the line.

Q: Can we train a perceptron to recognize whether a point is above or below the line?

Perceptron: a classifier

Consider the perceptron:

Two inputs: the (x, y) coordinate of a point.

Use a <u>binary</u> activation function: output = $\{0, 1\}$ interpret as "below the line" interpret as "above the line" Weights: w_x , w_y

We'll need to specify those ...

Perceptron classifier #1

We'd like to classify a point as either above or below this line:

Let's consider a point (-2, -3).

Q: What weights? To start let's choose: $w_x=1$, $w_y=1$

Q: What is the output? $x * w_x + y * w_y = -2 * 1 + -3 * 1 = -5 < 0$ so, output = 0 Perceptron succeeds! interpret as "below the line"

Perceptron classifier #1

We'd like to classify a point as either above or below this line:

Let's consider another point (0, -1).

Keep weights fixed at w_x=1, w_y=1

Q: What is the output? $x * w_x + y * w_y = 0 * 1 + (-1) * 1 = -1 < 0$ so, output = 0 **Demonstrum failed** interpret of "holew the line"

Perceptron <u>fails</u>!

interpret as "below the line"

Perceptron classifier #2

To correct this error, add another input: bias

We'll set *bias* = 1, and multiply it by a weight (w_b)

Let's reconsider the troublesome point (0, -1). Then, the output:

 $x * w_x + y * w_y + bias * w_b = 0 * 1 + (-1) * 1 + 1 * w_b = -1 + w_b$

So, if $w_b > 1$ then output = 1interpret as "above the line"Note, if $w_b < 1$ then output = 0interpret as "below the line"

• The bias acts to "bias" the perceptron's output.

Use weights to set perceptron's knowledge: (0,-1) above or below line?

Perceptron classifier #2: Summary

Summary of <u>perceptron classifier</u>:

For any point (x,y) ask the perceptron:

Is the point above (output 1) or below (output 0) the line?

Q: Will the perceptron get classification right?

A: If we're lucky, then maybe ... but we need to train it.

Perceptron training

To train our perceptron, we'll use **supervised learning**.

- -We'll provide our perceptron with inputs & correct answer.
- The perceptron will compare its guess with the correct answer.
 - If the perceptron makes an <u>incorrect</u> guess,

then it can <u>learn</u> from it's mistake

adjust its weights

Let's do it

Perceptron training

Perceptron training in <u>5 steps</u>:

- 1. Provide perceptron with inputs and known answer.
- 2. Ask perceptron to guess an answer.
- 3. Compute the error: does perceptron get answer right or wrong?
- 4. Adjust all weights according to the error. Learning!
- 5. Return to Step 1 and repeat.

Note: We know how to do <u>Step 2</u>, consider other steps ... forward propagation

Consider <u>Step 3</u>. *Compute the error*

Q: What is the perceptron's error?

Let's define it:

Difference between desired answer and perceptron's guess.

Error = Desired output - Perceptron output

In our case: $\{0, 1\}$ $\{0, 1\}$

Remember, the output has only 2 possible states.

Let's make a table of possible error values:

Desired output	Perceptron output	Error		
0	0	0	ok!	
0	1	-1	:(
1	0	1	:(
1	1	0	ok!	

<u>Note</u>: the error is 0 when perceptron guesses the <u>correct</u> output the error is +1 or -1 when perceptron guesses the <u>wrong</u> output

Next step: use the error to adjust the weights ...

Q: How do we know if a point is above or below the line?

Remember the formula for a line:

$$y_{line} = \mathbf{m}^* \mathbf{x} + \mathbf{b} \qquad \mathbf{m} = \text{slope of line} \\ \mathbf{b} = \text{intercept of line}$$

Given a point:

If $y > y_{line}$ then y is above the line

Consider <u>Step 4</u>. *Adjust all weights according to the error*.

The error determines how weights should be adjusted.

Let's define the change in weight:

 \triangle weight = Error * Input

Then, to update the weight:

New weight = weight + \triangle weight = weight + Error * Input

<u>Note</u>: The error determines how the weight should be adjusted big error — big change in weight

So, for our perceptron to learn:

- adjust the weights according to the error.

We'll also include a **learning constant**:

Compute this for Step 4:

New weight = weight + Error * Input * Learning Constant

When learning constant is <u>big</u>: weights change more drastically.

• Get to a solution more quickly.

When learning constant is <u>small</u>: weights change more slowly.

• Small adjustments improve accuracy

Let's train the perceptron ...

Initialize:

All weights = 0.5 Learning constant = 0.01 (x, y)Define line: y = 2x + 1This is the relationship we want our perceptron to learn ...

<u>Step 1</u>: *Provide perceptron with inputs and known answer.*

line (a) x=0.7: $y_{\text{line}} = 2*0.7 + 1 = 2.4$

So, $y > y_{line}$

So, y is <u>above</u> the line. (this is the known answer)

<u>Step 2</u>. Ask perceptron to guess an answer.

Compute weighted summed inputs:

$$w_x x + w_y y + w_b bias = 0.5 * 0.7 + 0.5 * 3 + 0.5 * 1 = 2.35$$

x y bias

So, $w_x x + w_y y + w_b bias > 0$

So,
$$output = 1$$

<u>Step 3</u>. *Compute the error*.

Perceptron output = 1 (Perceptron: "point is above the line")

Desired output = 1 (Us: the point is above the line.)

Error = Desired output - Perceptron output

= 1 - 1

= 0 No error, perceptron guess is correct.

<u>Step 4</u>. Adjust all weights according to the error.

New weight	= weight	+	Error	* Input	* Learning Constant
W_X :	0.5	+	0	* 0.7	* 0.01 = 0.5
Wy:	0.5	+	0	* 3	* 0.01 = 0.5
Wb:	0.5	+	0	* 1	* 0.01 = 0.5

No change in weights

Q: Our Perceptron is already "smart enough"?

<u>Step 5</u>. *Return to Step 1 and repeat* ...

<u>Step 1</u>: *Provide perceptron with inputs and known answer.*

line (a) x=1: $2*1 + 1 = 3 = y_{line}$

So, $y < y_{line}$

So, y is <u>below</u> the line. (this is the known answer)

<u>Step 2</u>. Ask perceptron to guess an answer.

Compute weighted summed inputs:

$$w_x x + w_y y + w_b bias = 0.5 * 1 + 0.5 * 0 + 0.5 * 1 = 1 x y bias$$

So, $w_x x + w_y y + w_b bias > 0$

So,
$$output = 1$$

<u>Step 3</u>. *Compute the error*.

Perceptron output = 1 (Perceptron: "point is above the line")

Desired output = 0 (Us: the point is <u>below</u> the line.)

Error = Desired output - Perceptron output

= -1 Error, the perceptron guess is wrong.

<u>Step 4</u>. Adjust all weights according to the error.

New weight	= weight	+	Error	* Input	* Learning	g Constant
W_X :	0.5	+	-1	* 1	* 0.01	= 0.49
Wy:	0.5	+	-1	* 0	* 0.01	= 0.5
Wb:	0.5	+	-1	* 1	* 0.01	= 0.49

We've changed the weights

- **Q:** Our Perceptron is already "smart enough"?
- A: No, our Perceptron is "getting smarter"

<u>Step 5</u>. *Return to Step 1 and repeat* ...

In fact, repeat the entire process 1000 times (or more). Each time:

- Choose a random (x,y).
- Determine if it's above or below 2x + 1.
- Ask the perceptron.
- Adjust the weights.

Q: Could you do this by hand?

Q: <u>Would</u> you do this by hand?