Perceptron

Instructor: Mark Kramer

Part 1 A Discrete Neuron: The Perceptron

Today

We'll begin to study neural networks:

– The simplest case: The Perceptron.

Neural models were these began with a model of layer \mathbf{z} **Reural models**

. . . can be extremely complicated:

multi-compartment models

A neuron, conceptually

Conceptually, a neuron:

- receives inputs
- $–*processes* those inputs $^{\bullet}$$
- generates an output.

In practice, it's really complicated …

[Economo et al, Nature, 2018]

Neural network models

Here, we'll simplify.

Consider **neural networks**: collections of abstracted neurons connected to each other through weighted connections (simplified "synapses").

Q: What's been lost here?

Neural network models

Neural networks can be more complex …

Networks can adapt their behavior by adjusting edge weights.

We'll talk more about this \dots

The "simplest" information processor

The Perceptron

– the simplest neural network possible: a single neuron

Three elements:

Feed-forward model progresses from left to right input comes in, gets processed, output goes out

The "simplest" information processor

Divide information processing into $\frac{4 \text{ steps}}{4 \text{ steps}}$:

- 1. Receive inputs
- 2. Weight inputs
- 3. Sum weighted inputs
- 4. Generate output

Let's go through each step, in a concrete example ...

4 steps of information processing (Step 1)

Step 1. Receive inputs.

Example: a perceptron with two inputs.

Let's define: $input_1 = 12$ $input_2 = 4$

4 steps of information processing (Step 2)

Step 2. Weight inputs.

Each input sent to the neuron is **weighted**

= multiplied by some number.

```
Example: Let's define: w_1 = 0.5w_2 = -1
```
Now, "weight inputs": multiply each input by its weight.

input1 * w1 = 12 * 0.5 = 6 input2 * w2 = 4 * -1 = -4

4 steps of information processing (Step 3 & 4)

Step 3. Sum weighted inputs

 $input_1 * w_1 + input_2 * w_2 = 6 + (-4) = 2$

Step 4. Generate output.

Q: How?

A: Pass the summed weighted inputs through an **activation function**

If the summed weighted input is "big enough", then "fire".

Different choices here ... we'll consider different options.

The Perceptron Algorithm

Summary:

1. For every input, multiply that input by its weight.

2. Sum all of the weighted inputs

3. Compute the <u>output</u> of the perceptron based on that sum passed through an activation function.

(we'll discuss these later)

The "simplest" information processor: more generally

Summary: the neuron performs a **weighted addition** of its input. The sum is then run through an **activation function** to produce output which can then act as input to other neurons.

To start, let's assign variable names to each model element:

The perceptron: more generally

The activity of the neuron depends on the summed, weighted inputs.

In the simplest case:

The perceptron: more generally

The **output** of the neuron is a function of the activity of the neuron (*x*):

 $output = f(x)$ In general, Here: $output = 0$ for $x \le 0$

$$
c_1 = 0 \text{ for } x \leq 0
$$

$$
output = 1 \text{ for } x > 0
$$

The activation function is **binary** (0 or 1).

Bias term

We can modify the model by adding a **bias** term:

Now the activity for the neuron becomes: *i*

$$
x = \sum_{i} input_i w_i + \theta
$$
new bias term

Bias term

Q: What is the effect of a negative bias term θ ? *x* = X² = X² *i* $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

For the neuron to generate output: $x > 0$ (Then *output* = 1)

To compensate for the negative bias term θ , the total input must increase to push the x above zero.

In other words: we need more input to make the neuron produce output.

The perceptron with bias term *i i*

So, the neuron model with bias: **x** $\frac{1}{2}$ $\frac{1}{2}$ *i*

$$
x = \sum_{i} input_i w_i + \theta
$$
 and
bias

Ex. θ output input1 input2 W₁ w2

 $x = input_1 w_1 + input_2 w_2 + \theta_j$ $x = 1*0.5 + 0*(-0.5) - 1 = -0.5$ $x < 0$ so *output* = 0 **Q**: What is *output ?*

 $\int \int u^2 \, du \, du = 0$ and $\int u^2 \, du = 0$ for $x \leq 0$ binary activation function *output* = 1 for $x > 0$

> Inputs to the neuron: Synaptic weights: Bias: $\theta = -1$ *x* \rightarrow output *input*₁ = 1 *input*₂ = 0 $w_1 = 0.5$ $w_2 = -0.5$

> > $x < 0$

The perceptron: application

The neuron model can perform <u>logical operations</u>:

Q: What logical operations can we perform?

Consider:

 $\lim_{x \to 0} \frac{f(x)}{f(x)}$ *output* $input_2$ $\theta = -3/2$ $w_1 = 1$ $w_2 = 1$

Note: *output* = 1 if both *input*₁ and *input*₂ provided. Make a table:

input₁ input₂ <i>output Input Output

A: ?

More complicated neural models

Single neuron models can become more complicated:

Different activation functions

More complicated neural network models

Neural network models can become much more complicated:

Neural network models

Summary:

• A neural network is a collection of abstracted neurons connected to each other through weighted connections ("synapses").

• **Learning:** A neural network learns by adjusting the strengths of the weights.

Perceptron

Instructor: Mark Kramer

Part 2 Teaching the Perceptron

Now

We'll continue to study neural networks:

- The simplest case: the Perceptron.
- Simple pattern recognition

Challenge

Consider these data:

?

?

?

?

.

.

.

Perceptron: a classifier

Let's examine a perceptron in action …

Specifically, let's use a perceptron to **classify** some data.

Perceptron: a classifier

Consider a line:

In this space, points are either "above" or "below" the line.

Q: Can we train a perceptron to recognize whether a point is above or below the line?

Perceptron: a classifier

Consider the perceptron:

Two inputs: the (x, y) coordinate of a point.

Use a <u>binary</u> activation function: output = $\{0, 1\}$ interpret as "below the line" interpret as "above the line" Weights: wx, wy

We'll need to specify those ...

Perceptron classifier #1

We'd like to classify a point as either above or below this line:

Let's consider a point $(-2, -3)$.

Q: What weights? To start let's choose: $w_x=1$, $w_y=1$

Q: What is the output? $x * w_x + y * w_y = -2 * 1 + -3 * 1 = -5 < 0$ so, output = 0 binary activation function Perceptron <u>succeeds</u>! interpret as "below the line"

Perceptron classifier #1

We'd like to classify a point as either above or below this line:

Let's consider another point $(0, -1)$.

Keep weights fixed at $w_x=1$, $w_y=1$

Q: What is the output? $x * w_x + y * w_y = 0 * 1 + (-1) * 1 = -1 < 0$ so, output = 0 binary activation function Perceptron <u>fails</u>! interpret as "below the line"

Perceptron classifier #2

To correct this error, add another input: **bias**

We'll set *bias* = 1, and multiply it by a weight (w_b)

Let's reconsider the troublesome point $(0, -1)$. Then, the output:

$$
x * w_x + y * w_y + bias * w_b = 0 * 1 + (-1) * 1 + 1 * w_b = -1 + w_b
$$

So, if $w_b > 1$ then output = 1 interpret as "above the line" Note, if $w_b < 1$ then output = 0 interpret as "below the line"

• The bias acts to "bias" the perceptron's output.

Use weights to set perceptron's knowledge: (0,-1) above or below line?

Perceptron classifier #2: Summary Summary of perceptron classifier:

For any point (x,y) ask the perceptron:

Is the point above (output 1) or below (output 0) the line?

Q: Will the perceptron get classification right?

A: If we're lucky, then maybe … but we need to train it.

Perceptron training

To train our perceptron, we'll use **supervised learning**.

- $-$ We'll provide our perceptron with inputs & correct answer.
- The perceptron will compare its guess with the correct answer.
	- If the perceptron makes an <u>incorrect</u> guess,

then it can learn from it's mistake

adjust its weights

Let's do it

Perceptron training

Perceptron training in $\frac{5 \text{ steps}}{2}$:

- 1. Provide perceptron with inputs and known answer.
- 2. Ask perceptron to guess an answer.
- 3. Compute the error: does perceptron get answer right or wrong?
- 4. Adjust all weights according to the error. **Learning!**
- 5. Return to Step 1 and repeat.

Note: We know how to do Step 2, consider other steps ... forward propagation

Consider Step 3. *Compute the error*

Q: What is the perceptron's error?

Let's define it:

Difference between desired answer and perceptron's guess.

Error = **Desired output** - **Perceptron output**

In our case: $\{0, 1\}$ $\{0, 1\}$

Remember, the output has only 2 possible states.

Let's make a table of possible error values:

Note: the error is 0 when perceptron guesses the correct output the error is $+1$ or -1 when perceptron guesses the wrong output

Next step: use the error to adjust the weights …

Q: How do we know if a point is above or below the line?

Remember the formula for a line:

$$
y_{line} = m*x + b \t m = slope of line b = intercept of line
$$

Given a point

Consider Step 4. *Adjust all weights according to the error.* The <u>error</u> determines how weights should be adjusted.

Let's define the change in weight:

 \triangle weight = Error * Input

Then, to update the weight:

New weight = weight + \triangle weight $=$ weight $+$ Error $*$ Input

Note: The error determines how the weight should be adjusted big error — big change in weight

So, for our perceptron to learn:

– adjust the weights according to the error.

We'll also include a **learning constant**:

Compute this for Step 4:

New weight $=$ weight $+$ Error $*$ Input $*$ Learning Constant

When learning constant is <u>big</u>: weights change more drastically.

• Get to a solution more quickly.

When learning constant is small: weights change more slowly.

• Small adjustments improve accuracy

Let's train the perceptron ...

Initialize:

All weights $= 0.5$ Learning constant $= 0.01$ Define line: $y = 2x + 1$ (x, y) This is the relationship we want our perceptron to learn …

Step 1: *Provide perceptron with inputs and known answer.*

line @ x=0.7: $y_{\text{line}} = 2*0.7 + 1 = 2.4$

So, $y > y$ line

So, y is above the line. (this is the known answer)

Step 2. *Ask perceptron to guess an answer.*

Compute weighted summed inputs:

$$
w_x x + w_y y + w_b bias = 0.5 * 0.7 + 0.5 * 3 + 0.5 * 1 = 2.35
$$

x y bias

So, $w_x x + w_y y + w_b bias > 0$

So, output =
$$
1
$$

Step 3. *Compute the error.*

Perceptron output $= 1$ (Perceptron: "point is above the line")

Desired output $= 1$ (Us: the point is above the line.)

Error = **Desired output** - **Perceptron output**

 $=$ 1 - 1

= 0 No error, perceptron guess is correct.

Step 4. *Adjust all weights according to the error.*

No change in weights

Q: Our Perceptron is already "smart enough"?

Step 5. *Return to Step 1 and repeat* …

Step 1: *Provide perceptron with inputs and known answer.*

line ω x=1: $2*1 + 1 = 3 = y$ line

So, $y < y$ line

So, y is **below** the line. (this is the known answer)

Step 2. *Ask perceptron to guess an answer.*

Compute weighted summed inputs:

$$
w_x x + w_y y + w_b bias = 0.5 * 1 + 0.5 * 0 + 0.5 * 1 = 1
$$

x y bias

So, $w_x x + w_y y + w_b bias > 0$

So, output =
$$
1
$$

Step 3. *Compute the error.*

Perceptron output $= 1$ (Perceptron: "point is above the line")

Desired output $= 0$ (Us: the point is below the line.)

Error = **Desired output** - **Perceptron output**

$$
= 0 - 1
$$

= -1 Error, the perceptron guess is wrong.

Step 4. *Adjust all weights according to the error.*

We've changed the weights

- **Q:** Our Perceptron is already "smart enough"?
- A: No, our Perceptron is "getting smarter"

Step 5. *Return to Step 1 and repeat* …

In fact, repeat the entire process 1000 times (or more). Each time:

- Choose a random (x,y) .
- Determine if it's above or below $2x + 1$.
- Ask the perceptron.
- Adjust the weights.

Q: Could you do this by hand?

Q: Would you do this by hand?