Perceptron

Instructor: Mark Kramer

Part 1
A Discrete Neuron: The Perceptron

Today

We’ll begin to study neural networks:
— The simplest case: The Perceptron.

Neural models
Blue brain project

Blue Brain Project

... can be extremely complicated:

multi-compartment models

each at
least a
HH

model

A neuron, conceptually

Conceptually, a neuron:
—Trece1ves mnputs

—processes those mmputs a b
.’k’.:} /
— generates an output. o w7 5
WX _ﬁc“.y

In practice, 1t’s really i 7o
complicated ... IS K om
o

[Economo et al, Nature, 2018]

Neural network models

Here, we’ll simplify.

Consider neural networks: collections of abstracted neurons connected
to each other through weighted connections (simplified “synapses”™).

Cartoon & Cast of Characters

synapses
Hlpllt \ /
input —/‘ output
input neuron

Q: What’s been lost here?

Neural network models

Neural networks can be more complex ...

synaptic connections '

edoe neuron
(cdge) (node)

Networks can adapt their behavior by adjusting edge weights.

We’ll talk more about this ...

The “simplest” information processor

The Perceptron
—the simplest neural network possible: a single neuron

Three elements:

1. mput(s) 2. “processor” 3. single output
input \
input ————e output
input

Feed-forward model progresses from left to right

Input comes 1n, gets processed, output goes out

The “simplest” information processor

N\

input ————e output

~

input
Divide information processing into 4 steps:

input

1. Recelve 1nputs

2. Weight inputs

3. Sum weighted inputs
4. Generate output

Let’s go through each step, in a concrete example ...

4 steps of information processing (Step 1)

Step 1. Receive mputs.

>Q—‘ output

Input;

Inputy

Example: a perceptron with two 1nputs.

Let’s define: input; =12
input, =4

4 steps of information processing (Step 2)

Step 2. Weight inputs.

input; Wi

\‘Q——o output
input, W

Each input sent to the neuron 1s weighted

= multiplied by some number.
Example: Let’s define: w;=0.5

wa=-1
Now, “weight inputs”: multiply each iput by 1ts weight.

input;+wi; =12%0.5 =6

inputc+wy, =4*-1 =4

4 steps of information processing (Step 3 & 4)

Step 3. Sum weighted inputs

iﬂpU.tl W1
\. .
| —@ output
input; /\.Vz
input; *wi+inputz+w2 =6+ (-4) =2

Step 4. Generate output.

Q: How?
A: Pass the summed weighted inputs through an activation function

If the summed weighted input 1s “big enough™, then “fire”.

Different choices here ... we’ll consider different options.

The Perceptron Algorithm

Summary:

\'Q—o output
input; /\.Vz

1. For every input, multiply that input by its weight.
2. Sum all of the weighted mputs

3. Compute the output of the perceptron based on that sum
passed through an activation function.

T

(we’ll discuss these later)

12

The “simplest” information processor: more generally

Summary: the neuron performs a weighted addition of its
input. The sum 1s then run through an activation function
to produce output which can then act as input to other
neurons.

To start, let’s assign variable names to each model element:

Input w;
X = activity of neuron

Input; —o@—o output input; = mput from source 1

input, /T

Wh w; = synaptic weight from input; to neuron

13

The perceptron: more generally

The activity of the neuron depends on the summed, weighted inputs.

In the simplest case:

input; Wi
activity of _, 1» = E ZnPUtz w; \l
ncuron . .
(T T Input; —e output

“summation”/ input from weight . /T

over all inputs sourcei fromi input, w,

14

The perceptron: more generally

The output of the neuron i1s a function of the activity of the

neuron (X):
Input; \IV]
input; —e output
inputn/Twn
In general, Hope. OUIPUL = 0 forx <0
output = f(x) output = 1 for x > 0

The activation function 1s binary (0 or 1).

15

Bias term

We can modify the model by adding a bias term:

Input,; IVJ
Input; ——e output
in p”tn/vj O bias

Now the activity for the neuron becomes:

L — E znputz Ww; new bias term
()

16

Bias term

Q: What is the effect of a negative bias term O ?

Total input bias

For the neuron to generate output: X >0 (Then output=1)

To compensate for the negative bias term 0, the total input must

increase to push the X above zero.

In other words: we need more input to make the neuron produce output.

17

The perceptron with bias term

So, the neuron model with bias:

binary activation function

T — Z imput; w; and output =10 forx <0
()

= >
— output =1 for x > 0

EX. . ¢
1nputi Inputs to the neuron:

/.@—‘ output input;=1 input,=0
input; W2

Synaptic weights:
= (.5 Wy — -0.5
Q: What is output ? l Bias: O = -1

x = input; w; + input, w, + 0

x = 1%0.5 +0%(-0.5) - 1 =-0.5 x<0 so

The perceptron: application

The neuron model can perform logical operations:

Q: What logical operations can we perform?

Consider: Make a table:

Input Output
input; —o@_‘ output input; input, output
znput2 — _3/9 0 0

W, = 1 1 0
Note: output = 1 1f 0 1
both input,; and input, provided. 1 1

A: ?

19

Many
Inputs:

More complicated neural models

Single neuron models can become more complicated:

T BINARY

SIGMOID

< o o
- — —y
> > >

THRESHOLD - LINEAR

20

Different
activation
functions

More complicated neural network models

Neural network models can become much more complicated:

“Inputs”

Q: Which are
the “inputs?

SYNAPSES

2N

FEEDFORWARD NETWORK:

FEEDBACK NETWORK:

OUTPUT
CELL BODY

Connect 1n layers

Feedback between
layers

21

Neural network models

Summary:

e A neural network 1s a collection of
abstracted neurons connected to each
other through weighted connections

(““‘synapses’).

e Learning: A neural network learns
by adjusting the strengths of the
weights.

SYNAPSES

\ — /\

AXON

INPUTS & e ._—'

/ ‘\ OUTPUT
CELL BODY

FEEDFORWARD NETWORK:

FEEDBACK NETWORK:

0

22

Perceptron

Instructor: Mark Kramer

Part 2
Teaching the Perceptron

23

Now

We’ll continue to study neural

 networks:

— The simplest case: the Perce;
— Simple pattern recognition

ptron.

24

Consider these data:

oo rRr kR WREFERNREFREPFONORFROOS

[

. 9062
. 8555
.9104
. 7769
.5611
.8517
.1616
. /382
. 1395
. 0997
. 1965
.8313
. 3909
1271
.4838
. 1555

input 1

.6623
. 8467
.5956
.3029
.2519
. 2829
. 9551
.8326
.8733
.4400
.1410
. 0591
. 0422
.6632
. 8297
.2390

input 2

Challenge

S
I

1.0000
1.0000

output = {0, 1}

New data

1.4134 -1.8730
1.6706 -0.7096
0.3063 -1.4071
1.3779 -1.8003
0.8425 -1.3501
1.0038 -0.1407
3.2511 -0.7492
0.7264 0.3050
0.1882 1.4591
2.3571 -1.7109
input 1 mput 2

25

‘Y °W °W °W

Perceptron: a classifier

Let’s examine a perceptron in action ...

Specifically, let’s use a perceptron to classify some data.

26

Perceptron: a classifier

Consider a line:

® ® Note: Each point
specified by (X,y)
coordinate.

In this space, points are either “above” or “below” the line.

QQ: Can we train a perceptron to recognize whether a point 1s
above or below the line?

Perceptron: a classifier

Consider the perceptron:

Two mnputs: the (x, y) coordinate of a point.

Use a binary activation function: output = {0, 1}

T

interpret as “below the line”

interpret as “above the line”
Weights: wx, wy

We’ll need to specify those ...

Perceptron classifier #1

We’d like to classify a point as either above or below this line:

Let’s consider a point (-2, -3).
Q: What weights? To start let’s choose: wx=1, wy=1

Q: What 1s the output? . L .
binary activation function

X*Wxty*wy =2%]1+-3*%]1=.5<0 so,output=20

T

Perceptron succeeds! interpret as “below the line”

Perceptron classifier #1

We’d like to classify a point as either above or below this line:

Let’s consider another point (0, -1).
Keep weights fixed at wx=1, wy=1

Q: What 1s the output? . L .
binary activation function
X*Wxty*wy =0*1+(-1)*1=-1 <0 so,output=10

T

Perceptron fails! interpret as “below the line”

Perceptron classifier #2

To correct this error, add another input: bias

bias
X \\‘Vx le
y—"w

We’ll set bias = 1, and multiply 1t by a weight (wp)

output
y

Let’s reconsider the troublesome point (0, -1). Then, the output:

X*Wxty*Wy +bias*wp, =0*1+C-D)*1+1*w, =-1+wp

So, 1f wp > 1 then output = 1 interpret as “above the line”

Note, 1f wo <1 then output =0 interpret as “below the line”
* The bias acts to “bias the perceptron’s output.

Use weights to set perceptron’s knowledge: (0,-1) above or below line?

Perceptron classifier #2: Summary

Summary of perceptron classifier:

output = 1 1
L,

X\ outpu
y/-Q_‘ tput

(X,y) ®

output = ()

For any point (Xx,y) ask the perceptron:

Is the point above (output 1) or below (output 0) the line?

Q: Will the perceptron get classification right?

A: If we’re lucky, then maybe ... but we need to train it.

Perceptron training

To train our perceptron, we’ll use supervised learning.

— We’ll provide our perceptron with inputs & correct answer.
— The perceptron will compare 1ts guess with the correct answer.

* [f the perceptron makes an incorrect guess,

then 1t can learn from it’s mistake

adjust its weights

Let’sdoit....

33

Perceptron training

Perceptron training in 5 steps:

1. Provide perceptron with inputs and known answer.
2. Ask perceptron to guess an answer.
3. Compute the error: does perceptron get answer right or wrong?

4. Adjust all weights according to the error. Learning!

5. Return to Step 1 and repeat.

Note: We know how to do Step 2, consider other steps ...

T

forward propagation

34

Perceptron training: Step 3

Consider Step 3. Compute the error

Q: What 1s the perceptron’s error?

Let’s define it:
Difference between desired answer and perceptron’s guess.
Error = Desired output - Perceptron output
In our case: {0, 1} {10, 1}

Remember, the output has only 2 possible states.

35

Perceptron training: Step 3

Let’s make a table of possible error values:

Desired output Perceptron output Error
0 0 0 ok!
0 1 -1 :(
1 0 1 (
1 1 0 k!

Note: the error 1s 0 when perceptron guesses the correct output

the error 1s +1 or -1 when perceptron guesses the wrong output

Next step: use the error to adjust the weights ...

36

Perceptron training: Step 3

Q: How do we know 1if a point 1s above or below the line?

Remember the formula for a line:

Vine = M*x +b m = slope of line

Given a point: b = intercept of line

* (X,Y)

(X, Yline) S4————— Compute: yine=m*x + b

A: Compare Viine VETSUS Y.

If y > yine then y is above the line

Perceptron training: Step 4

Consider Step 4. Adjust all weights according to the error.

The error determines how weights should be adjusted.

Let’s define the change 1n weight:
A\ weight = Error * Input

Then, to update the weight:

New weight = weight + /\ weight

= weight + Error * Input

Note: The error determines how the weight should be adjusted

big error — big change 1n weight

Perceptron training: Step 4

So, for our perceptron to learn:
— adjust the weights according to the error.

We’ll also include a learning constant:

Compute this for Step 4:

New weight = weight + Error * Input * Learning Constant

When learning constant 1s big: weights change more drastically.

* Get to a solution more quickly.

When learning constant is small: weights change more slowly.

* Small adjustments improve accuracy

39

Perceptron training: by-hand

Let’s train the perceptron ...
bias =1

b,

output

Initialize:

All weights = 0.5
* (X,y)

Learning constant = 0.01 /

Define line: y=2x+1

T

This 1s the relationship we want our perceptron to learn ...

40

Perceptron training: by-hand

Step 1: Provide perceptron with inputs and known answer.

e choose (0.7, 3)
Xy

Yline
line: y=2x+1

line @ x=0.7: Yine= 2*0.7+1=24
SO, V> Vline

So, y 1s above the line. (this 1s the known answer)

41

Perceptron training: by-hand

Step 2. Ask perceptron to guess an answer.

bias = 1

N
y/v.v

Compute weighted summed inputs:

output
y

WxX +wyy+wpblas = 0.5*%0.7 +0.5*3+05*1 =235
X y bias

SO0, wxX + wyy + wpbias >0

42

Perceptron training: by-hand

Step 3. Compute the error.

bias =1
b,

output

Perceptron output =1 (Perceptron: “point 1s above the line”)
Desired output =1 (Us: the point 1s above the line.)

Error = Desired output - Perceptron output
= 1 - 1

= (0 No error, perceptron guess 1s correct.

Perceptron training: by-hand

Step 4. Adjust all weights according to the error.

New weight = weight + Error * Input * Learning Constant

Wy 05 + 0 *0.7 *0.01=0.5
Wy 0.5 0 *3 *0.01=05
W 05 + 0 *1 *0.01=05

No change 1n weights

Q: Our Perceptron 1s already “smart enough”?

Step S. Return to Step 1 and repeat ...

Perceptron training: by-hand

Step 1: Provide perceptron with inputs and known answer.

line: y=2x+1

Yline

Choose another point: e (I, 0)
Xy

line @ x=1: 2*1 +1=3 = Vline
S0, ¥ < Viine

So, y 1s below the line. (this 1s the known answer)

45

Perceptron training: by-hand

Step 2. Ask perceptron to guess an answer.

lbias =1
X Wx @ Wb
\.)
utput
y /\.Vy
Compute weighted summed 1nputs:
wxX+twyy+wpblas = 05*1 +05*0+05*1 =1
X y bias

SO0, wxX + wyy + wpbias >0

46

Perceptron training: by-hand

Step 3. Compute the error.

bias =1
b,

output

Perceptron output = 1 (Perceptron: “point 1s above the line”)

Desired output =0 (Us: the point 1s below the line.)

Error = Desired output - Perceptron output
— 0 - 1

-1 Error, the perceptron guess 1s wrong.

Perceptron training: by-hand

Step 4. Adjust all weights according to the error.

New weight = weight + Error * Input * Learning Constant

W 0.5 + -1 *1 £0.01 = 0.49
Wy 0.5 1 *0 *0.01 =05
Wb 05 + -1 *1 %001 = 0.49

We’ve changed the weights

Q: Our Perceptron 1s already “smart enough”?

A: No, our Perceptron 1s “getting smarter”

Perceptron training: by-hand

Step S. Return to Step 1 and repeat ...

In fact, repeat the entire process 1000 times (or more).
Each time:

* Choose a random (x,y).

* Determine 1f 1t’s above or below 2x + 1.

* Ask the perceptron.

» Adjust the weights.

Q: Could you do this by hand?

Q: Would you do this by hand?

49

