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Part 1 
A Discrete Neuron: The Perceptron

Perceptron

Instructor: Mark Kramer 



Today
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We’ll begin to study neural networks: 
– The simplest case: The Perceptron.



Neural models 
. . . can be extremely complicated:
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dependent), “K2,” and “M” types; high- and low-threshold gCa; and a
relatively slow anomolous rectifier, or “h,” conductance.

The cell types and cell locations of the 3,560-neuron model are
shown in Fig. 1. The cortical portion of the model is one-dimensional,
the dimension being cortical depth: dimensions parallel to the pia are
not represented, so that the structure can be thought of as a column.
Space is not defined within the thalamic portion. The reader should
note the following: there is no layer 1; layers 2 and 3 are lumped
together; a large variety of neuronal types are omitted, including but
not limited to: neurogliaform cells, double bouquet cells, multipolar
bursting neurons (Blatow et al. 2003), and numerous other sorts of
interneurons; there are no pyramidal cells in layer 4; synaptic inhibi-
tion in layer 4 derives primarily from deep interneurons; there are no
FRB cells in deep layers nor FRB interneurons (which were shown to
exist by Steriade et al. 1998); there is homogeneity of cell structure
within layers. Considerations in choosing the repertoire that we used
were these: we began with a model of layer 2/3 circuitry that included
RS and FRB pyramidal cells, as well as superficial fast-spiking (FS)

and low-threshold spiking (LTS) interneurons (Cunningham et al.
2004a). We needed layer 4 stellate cells as the major recipient of
thalamic inputs. Tufted pyramids in layer 5 are a major neuronal type,
much studied, and important for cortical outputs not headed for the
thalamus; and both IB and occasionally RS firing patterns have been
described in these cells (Williams and Stuart 1999). Layer 6 pyramids
were needed as an interface to the thalamus. Deep interneurons were
necessary because, for among other reasons, we know that in vitro
gamma/beta oscillations have different structure in deep versus su-
perficial layers (A. Roopun and M. A. Whittington, unpublished data).
Finally, both nRT and TCR thalamic neurons are essential for the
understanding of thalamic oscillations, including sleep spindles, as
presented here, but also for subsequent work including delta waves
and the slow (!1 Hz) oscillation of sleep (Steriade et al. 1993).

APPENDIX A provides further details on the structure of the individual
cell models and illustrates examples of some of their firing behaviors,
considered as single neurons in isolation from other neurons.

The neurons were connected together 1) by chemical synapses,
using AMPA and NMDA receptors, and !-aminobutyric acid-A
(GABAA; but not GABAB) receptors; and 2) gap junctions, that were
nonrectifying and voltage-independent. Connections of both sorts
were “wired up” randomly, subject to constraints on how many
connections there were, and the possible locations of postsynaptic
compartments. A given excitatory synapse activated both "-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-
D-aspartate (NMDA) receptors. Gap junctions were located between
dendrites of cortical interneurons, of nRT cells (Landisman et al.
2002), and of TCR cells (Hughes et al. 2002a). Gap junctions could
also be located between the axons of 1) the pool of superficial
pyramids, RS and FRB; and/or 2) the pool of spiny stellates; and/or 3)
the pool of layer 5 tufted pyramids; and/or 4) the pool of layer 6
nontufted pyramids. It was a major assumption that only homologous
sorts of glutamatergic neurons could be electrically coupled by their
axons (see APPENDIX B).

We justified the use of axonal coupling as follows: 1) it is necessary
in models for the occurrence of gamma oscillations (Cunningham et
al. 2004a); 2) spikelets occur in cortical neurons (Cunningham et al.
2004a; Deschênes,1981; Thomson and Bannister 2004; however, the
Deschênes study attributed the spikelets to synaptic activation); 3)
there is staining for pannexin 2 [a putative component of the electrical
coupling substrate between axons (Bruzzone et al. 2003)] throughout
cortical layers 2–6 (Cunningham et al. 2004a); 4) very fast oscilla-
tions occur in the cortex (Traub et al. 2001; this paper).

Certain important state variables could not be included, such as
fluctuations in extracellular ion concentrations. In addition, we did not
allow for afferent inputs (coming from outside the model network), or
for specific effects of neuromodulators on membrane properties,
although we did depolarize selected neuronal subpopulations (includ-
ing FRB neurons, and at times pyramidal neurons in layers 5 and 6),
using steady bias currents. All collective behaviors simulated are thus
essentially “autonomous” in the model network.

The effects of the many simplifications made here will become
known as progressively more detailed models are constructed and
their behaviors analyzed. It is to be hoped that—as the model
incorporates further cell types, membrane currents, metabotropic
effects, more accurate synaptic connectivity, and so forth—then it will
be possible to study a broader range of network phenomena, including
the slow oscillation of sleep, gamma oscillations in deep cortical
layers, and cortical responses to thalamic activation.

In APPENDIX B, we list the set of “baseline” synaptic conductance
scaling constants. These, and details of connectivity, were arrived at
after extensive (dozens) of preliminary simulations. (Many dozens of
preliminary simulations were also necessary for each individual cell
model.) Then, for this paper, we can list modifications in synaptic
conductances relative to the baseline values. APPENDIX B also describes
between-cell connectivity (synaptic and gap junctional), methods for

FIG. 1. General architecture of the model. All neurons are multicompart-
mental, with soma, branching dendrites, and a short branching axon. Thalamic
portion of the network contains (a) 100 nucleus reticularis thalami (nRT) cells
[each with low-threshold gCa, and lacking intrinsic gamma oscillatory proper-
ties (Contreras et al. 1993; Pinault and Deschênes 1992)], as well as (b) 100
“typical” thalamocortical relay (TCR) cells [i.e., also lacking intrinsic gamma
oscillations (Steriade et al. 1993)]. Cortical portion contains the following cell
types: (c) 500 layer 6 nontufted pyramidal neurons that connect intracortically,
as well as to nRT and TCR neurons (the only model cortical cells to connect
to the thalamus); (d) 100 deep fast-spiking (FS) basket interneurons, 100 deep
axoaxonic interneurons, 100 deep low threshold spiking (LTS) dendrite-
contacting interneurons; (e) 800 layer 5 tufted intrinsic bursting (IB) pyramidal
neurons and 200 layer 5 tufted regular spiking (RS) pyramidal neurons; (f) 240
layer 4 spiny stellate cells, the major (but not only) recipients of thalamic
inputs; (g) 1,000 layer 2/3 RS pyramidal cells and 50 layer 2/3 fast rhythmic
bursting (FRB) pyramidal cells; (h) 90 superficial basket interneurons, 90
superficial axoaxonic interneurons, and 90 LTS interneurons.
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A neuron, conceptually

Conceptually, a neuron: 
– receives inputs 
– processes those inputs 
– generates an output.

In practice, it’s really 
complicated …

[Economo et al, Nature, 2018]



Neural network models 

Cartoon & Cast of Characters synapses

output

neuron

Q: What’s been lost here?

Here, we’ll simplify. 

Consider neural networks: collections of abstracted neurons connected 
to each other through weighted connections (simplified “synapses”).

input

input

input



Neural networks can be more complex …

6

…

neuron 
(node)

synaptic connections 
(edge)

Networks can adapt their behavior by adjusting edge weights.

We’ll talk more about this …

Neural network models 



output

3. single output

The “simplest” information processor

The Perceptron 
– the simplest neural network possible: a single neuron

Three elements: 

input

input

input

1. input(s) 2. “processor”

Feed-forward model progresses from left to right

input comes in, gets processed, output goes out



The “simplest” information processor

Divide information processing into 4 steps: 
1. Receive inputs 
2. Weight inputs 
3. Sum weighted inputs 
4. Generate output
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outputinput

input

input

Let’s go through each step, in a concrete example …



4 steps of information processing (Step 1)

Step 1. Receive inputs.

9

Let’s define:  

Example:  a perceptron with two inputs.

output
input1

input2

input1 = 12

input2 = 4



4 steps of information processing (Step 2)

Step 2.  Weight inputs.

output
input1

input2

= multiplied by some number.
Each input sent to the neuron is weighted

w1

w2

Example: Let’s define:  w1 = 0.5
w2 = -1

Now, “weight inputs”:  multiply each input by its weight.

input1 * w1 = 12 * 0.5 = 6

input2 * w2 = 4 * -1 = -4



4 steps of information processing (Step 3 & 4)

Step 3. Sum weighted inputs

Different choices here … we’ll consider different options.

input1 * w1 + input2 * w2 = 6 + (-4) = 2

Step 4. Generate output.

Q: How? 
A: Pass the summed weighted inputs through an activation function

If the summed weighted input is “big enough”, then “fire”.

output
input1

input2

w1

w2



The Perceptron Algorithm

Summary:
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1. For every input, multiply that input by its weight.

2. Sum all of the weighted inputs

3. Compute the output of the perceptron based on that sum 
passed through an activation function.

(we’ll discuss these later)

output
input1

input2

w1

w2



The “simplest” information processor: more generally 

Summary: the neuron performs a weighted addition of its 
input.  The sum is then run through an activation function 
to produce output which can then act as input to other 
neurons.
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To start, let’s assign variable names to each model element:

x = activity of neuron 
inputi = input from source iinputi

inputn

x output

input1

wi = synaptic weight from inputi to neuronwn

w1



The activity of the neuron depends on the summed, weighted inputs.
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In the simplest case:

“summation” 
over all inputs

input from 
source i

weight 
from i

activity of 
neuron

The perceptron: more generally 

inputi

inputn

x output

input1 w1

wn

x =
X

i

inputiwi (1)

0 = [�Dzij + Eyj ] (2)

zij = (E/D)yj (3)

zij = (E/D)xi (4)

1



The output of the neuron is a function of the activity of the 
neuron (x): 
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output = f(x)
In general, Here: output = 0 for x < 0 

output = 1 for x > 0 

The activation function is binary (0 or 1).

inputi

inputn

x output

input1 w1

wn

The perceptron: more generally 



We can modify the model by adding a bias term:
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Bias term

θ bias

Now the activity for the neuron becomes:

new bias term

inputi

inputn

x output

input1 w1

wnx =
X

i

inputiwi (1)

x =
X

i

inputiwi + ✓ (2)

1



Q:  What is the effect of a negative bias term θ ?
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Total input

For the neuron to generate output: (Then output = 1)

To compensate for the negative bias term θ, the total input must 
increase to push the x above zero.

In other words: we need more input to make the neuron produce output.

bias

x > 0

Bias term
x =

X

i

inputiwi (1)

x =
X

i

inputiwi + ✓ (2)

1



The perceptron with bias term
So, the neuron model with bias:

and

Ex.
Inputs to the neuron:

Synaptic weights:

x = input1 w1 + input2 w2 + θj

x = 1*0.5 +0*(-0.5) - 1 = -0.5 so output = 0

Q:  What is output ?

θ

θ = -1

bias

Bias:

x < 0

x =
X

i

inputiwi (1)

x =
X

i

inputiwi + ✓ (2)

1

binary activation function
output = 0 for x < 0 
output = 1 for x > 0

output
input1

input2

w1

w2

x input1 = 1 input2 = 0

w1 = 0.5 w2 = -0.5



input1 input2 output
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x outputinput1

θ = -3/2input2

w1 = 1

w2 = 1

OutputInput

1 1

0 1

1 0

0 0

Q:  What logical operations can we perform?

Consider:

Note: output = 1 if 
          both input1 and input2 provided.

A:  ?

Make a table:

The perceptron: application

The neuron model can perform logical operations:



Single neuron models can become more complicated:
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Many 
inputs:

Different 
activation 
functions

More complicated neural models



Neural network models can become much more complicated:
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Connect in layers

Feedback between 
layers

“inputs”

Q: Which are 
the “inputs?

More complicated neural network models



Neural network models
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Summary:

• A neural network is a collection of 
abstracted neurons connected to each 
other through weighted connections 
(“synapses”).

• Learning:  A neural network learns 
by adjusting the strengths of the 
weights. 
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Part 2 
Teaching the Perceptron

Perceptron

Instructor: Mark Kramer 



Now
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We’ll continue to study neural networks: 
– The simplest case: the Perceptron. 
– Simple pattern recognition



Challenge

Consider these data:
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input 1 input 2 output = {0, 1}

? 
? 
? 
? 
. 
. 
. 

New data

input 1 input 2



Perceptron: a classifier

Let’s examine a perceptron in action … 

Specifically, let’s use a perceptron to classify some data.
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Perceptron: a classifier

Consider a line:

Q: Can we train a perceptron to recognize whether a point is 
above or below the line?

In this space, points are either “above” or “below” the line.

Note: Each point 
specified by (x,y)  
coordinate.



Perceptron: a classifier

Consider the perceptron:

Two inputs:

Use a binary activation function: {0, 1}

interpret as “below the line”
interpret as “above the line”

Weights: 

wx

wy

wx, wy

We’ll need to specify those …

the (x, y) coordinate of a point.

x

y

output = 

output



Perceptron classifier #1
We’d like to classify a point as either above or below this line:

Q: What weights? To start let’s choose: wx=1, wy=1

Q: What is the output?

Let’s consider a point (-2, -3).

x * wx + y * wy = -2 * 1 + -3 * 1 = -5 < 0 so, output = 0
binary activation function

interpret as “below the line”Perceptron succeeds!



Perceptron classifier #1

We’d like to classify a point as either above or below this line:

Let’s consider another point (0, -1).

Keep weights fixed at wx=1, wy=1

Q: What is the output?

x * wx + y * wy = 0 * 1 + (-1) * 1 = -1 < 0 so, output = 0
binary activation function

interpret as “below the line”Perceptron fails!



Perceptron classifier #2
To correct this error, add another input: bias

output
x

y

wx

wy

bias
wb

We’ll set bias = 1, and multiply it by a weight (wb)

Let’s reconsider the troublesome point (0, -1).

x * wx + y * wy = 0 * 1 + (-1) * 1 + 1 * wb+ bias * wb = -1 + wb 

So, if wb > 1 then output = 1 interpret as “above the line”
Note, if wb < 1 then output = 0 interpret as “below the line”

• The bias acts to “bias” the perceptron’s output.

Then, the output:

Use weights to set perceptron’s knowledge: (0,-1) above or below line?



Perceptron classifier #2: Summary
Summary of perceptron classifier:

Q: Will the perceptron get classification right?

For any point (x,y) ask the perceptron:

(x, y) output
x

y

1
wb

output = 1

  Is the point above (output 1)

output = 0

or below (output 0) the line?

A: If we’re lucky, then maybe … but we need to train it.



Perceptron training

To train our perceptron, we’ll use supervised learning.
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then it can learn from it’s mistake

adjust its weights

Let’s do it ….

– We’ll provide our perceptron with inputs & correct answer. 
– The perceptron will compare its guess with the correct answer. 

• If the perceptron makes an incorrect guess,



1. Provide perceptron with inputs and known answer. 
2. Ask perceptron to guess an answer. 
3. Compute the error: does perceptron get answer right or wrong? 
4. Adjust all weights according to the error.

Perceptron training in 5 steps:
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Perceptron training

Learning!
5. Return to Step 1 and repeat.

Note: We know how to do Step 2, consider other steps …

forward propagation



Consider Step 3. Compute the error
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Perceptron training: Step 3

Q: What is the perceptron’s error?

Let’s define it:

Difference between desired answer and perceptron’s guess.

Error = Desired output - Perceptron output 

{0, 1} {0, 1}In our case:

Remember, the output has only 2 possible states.



Let’s make a table of possible error values:
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Perceptron training: Step 3

Desired output Perceptron output Error
0 0 0 ok!
0 1 -1 :( 
1 0 1
1 1 0

:( 
ok!

Note: the error is 0 when perceptron guesses the

the error is +1 or -1 when perceptron guesses the

Next step: use the error to adjust the weights … 

correct output

wrong output



Perceptron training: Step 3

Q: How do we know if a point is above or below the line?

Remember the formula for a line:

yline = m*x + b
Given a point:

(x, y)

A: Compare yline versus y.

Compute: yline =m*x + b(x, yline)

If y > yline then y is above the line

m = slope of line 
b  = intercept of line



Perceptron training: Step 4

Consider Step 4. Adjust all weights according to the error.

The error determines how weights should be adjusted.

Let’s define the change in weight:

New weight 

weight = Error * Input

Then, to update the weight:

+ weight= weight

= weight + Error * Input

Note: The error determines how the weight should be adjusted
big error — big change in weight



Perceptron training: Step 4

So, for our perceptron to learn: 
–  adjust the weights according to the error.
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New weight = weight + Error * Input * Learning Constant

When learning constant is big: weights change more drastically.

When learning constant is small: weights change more slowly.

• Get to a solution more quickly.

• Small adjustments improve accuracy

We’ll also include a learning constant:

Compute this for Step 4:



Let’s train the perceptron …
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Perceptron training: by-hand

All weights = 0.5

Learning constant = 0.01

output
x

y

wx

wy

bias = 1
wb

Initialize:

Define line:  y = 2x + 1

(x, y)

This is the relationship we want our perceptron to learn …



Step 1: Provide perceptron with inputs and known answer.
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line @ x=0.7:

So, y is above the line.

Perceptron training: by-hand

line:  y = 2x + 1

choose ( 0.7,  3 )

2*0.7 + 1 = 2.4yline =

yline

y > yline

x y

So, 

(this is the known answer)



Perceptron training: by-hand

Step 2. Ask perceptron to guess an answer.
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wx x + wy y + wb bias  =  0.5 * 0.7  + 0.5 * 3 + 0.5 * 1 

So, wx x + wy y + wb bias

So, output =

output
x

y

wx

wy

bias = 1
wb

Compute weighted summed inputs:

x y

1

 > 0 

= 2.35  
bias



Perceptron training: by-hand

Step 3. Compute the error.

Perceptron output

Desired output

Error = Desired output - Perceptron output 
=
= 0

(Perceptron: “point is above the line”)

(Us: the point is above the line.)

output
x

y

wx

wy

bias = 1
wb

= 1

= 1

- 11

No error, perceptron guess is correct.



Perceptron training: by-hand

Step 4. Adjust all weights according to the error.

wx : 0.5     +     0     * 0.7      * 0.01 = 0.5

wy : = 0.5

wb : = 0.5

No change in weights  

Q:  Our Perceptron is already “smart enough”? 

New weight = weight + Error * Input * Learning Constant

0.5     +     0     * 3         * 0.01

0.5     +     0     * 1         * 0.01

Step 5. Return to Step 1 and repeat … 
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line @ x=1:

So, y is below the line.

line:  y = 2x + 1

= yline

yline

y < yline

x y

So, 

(this is the known answer)

Step 1: Provide perceptron with inputs and known answer.

Perceptron training: by-hand

2*1 + 1 = 3

( 1,  0 )Choose another point:



Perceptron training: by-hand
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0.5 * 1  + 0.5 * 0 + 0.5 * 1  

Step 2. Ask perceptron to guess an answer.

wx x + wy y + wb bias  =  

output
x

y

wx

wy

bias = 1
wb

Compute weighted summed inputs:

x y

So, wx x + wy y + wb bias

So, output = 1

 > 0 

bias
= 1 



Perceptron training: by-hand

Step 3. Compute the error.

Perceptron output

Desired output

Error = Desired output - Perceptron output 
=
= -1

(Perceptron: “point is above the line”)

(Us: the point is below the line.)

output
x

y

wx

wy

bias = 1
wb

= 1

= 0

- 10

Error, the perceptron guess is wrong.



Perceptron training: by-hand

Step 4. Adjust all weights according to the error.

wx : 0.5     +     -1     * 1          * 0.01 =  0.49 

wy : =  0.5

wb : =  0.49

Q:  Our Perceptron is already “smart enough”? 

New weight = weight + Error * Input * Learning Constant

0.5     +     -1     * 0         * 0.01

0.5     +     -1     * 1         * 0.01

We’ve changed the weights  

A:  No, our Perceptron is “getting smarter”



Step 5. Return to Step 1 and repeat …  

In fact, repeat the entire process 1000 times (or more). 
Each time: 

• Choose a random (x,y). 
• Determine if it’s above or below 2x + 1. 
• Ask the perceptron. 
• Adjust the weights. 

Q: Could you do this by hand? 

Q: Would you do this by hand?
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Perceptron training: by-hand


