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Regression

Instructor: Mark Kramer 

A Practical Introduction 



Outline

A (very) practical introduction to linear regression 

Main idea: model data as a line.

Here is my modelHere is my data

y = mx + b



Data
Task performance (y)
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Brain activity (x)

[Kim et al, Nature, 2023][Kwon et al, bioRxiv, 2024]



Analyze the data (1)

Plot it …
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Visual inspection:

Python



Analyze the data (2)

Compute a statistic?
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Cxy =
1
N

1
σx

1
σy

N

∑
n=1

(xn − x̄)(yn − ȳ)

number of data points
standard deviation of x mean of x

standard deviation of y

mean of y

mean of x
sum the values of x for all n 
indices, then divide by the total 
number of points summed (N)

Correlation  and :  data at index nxn yn

sum from indices 1 to N



Analyze the data (2)
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variance of x characterizes the extent of 
fluctuations about the meanx

standard deviation of x σx = σ2
x

Compute a statistic?

Cxy =
1
N

1
σx

1
σy

N

∑
n=1

(xn − x̄)(yn − ȳ)

number of data points
standard deviation of x mean of x

standard deviation of y

mean of y

sum from indices 1 to N

Correlation  and :  data at index nxn yn



Analyze the data (2)

Compute a statistic? Correlation

Cxy =
1
N

1
σx

1
σy

N

∑
n=1

(xn − x̄)(yn − ȳ)

x − x̄

y − ȳ
* * * * * *

then sum & scale = Cxy

sum from indices 1 to N



Analyze the data (2)

Intuition Correlation

Cxy =
1
N

1
σx

1
σy

N

∑
n=1

(xn − x̄)(yn − ȳ)

Assume x̄ = ȳ = 0

Cxy =
1
N

1
σx

1
σy

N

∑
n=1

xn yn

What if x and y match? Cxy =

What if x equals -y? Cxy =

What if x and y are random? Cxy ≈

x

Reminder:

1

-1

0



Analyze the data (2)

Compute a statistic? Correlation

Cxy =
1
N

1
σx

1
σy

N

∑
n=1

(xn − x̄)(yn − ȳ)

Cxy =

Conclusion:

Python



Analyze the data (3): Regression

Motivation: Characterize relationships in the data. 

To do so: build a statistical model containing
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• systematic effects: things we know/observe that can explain 
the data

• random effects: unknown / haphazard variations that we 
make no attempt to model or predict



Regression

Goal: describe succinctly the systematic variations in the data, 
in a way that’s generalizable to other related observations 
(e.g., by another experimenter, at another time, in another 
place).
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Model y = α + β x

y outcome of measured system

x predictor of measured system

α, β parameters

Note: linear relationship

(behavior)

(firing rate)

+ noise
random effects we don’t model 



Regression

Note: we cannot observe y exactly … measurement error 

We observe approximately linear relationship (corrupted by noise). 

Challenge:

12

Choose values  for parameter ( ) in our model 
that “best describe” the data.

(a, b) α, β

We observe  and  and fit our modely1, y2, y3, … x1, x2, x3, …

y = α + βx

to choose the values  for parameter ( ) (a, b) α, β



Regression

 If we have , then we can compute model predictions:(a, b)
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̂y1 = a + bx1

̂y2 = a + bx2

. . .

Choose  to make model predictions  close to the 
observed outcomes  

(a, b) ̂y1, ̂y2, …
y1, y2, …

Note: Model predictions  do not reproduce exactly 
the observed outcomes  

̂y1, ̂y2, …
y1, y2, …

?



Regression
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Choose  to make model predictions  close to the 
observed outcomes  

(a, b) ̂y1, ̂y2, …
y1, y2, …

?

Q: “close” ?

A: A measure of discrepancy or distance

S2(y, ̂y) = ∑
i

(yi − ̂yi)2 “least squares”

Choose  to minimize   (a, b) S2(y, ̂y)

to minimize the discrepancy between  and y ̂y



Regression
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Minimize S2(y, ̂y) = ∑
i

(yi − ̂yi)2 assumes

1. All observation on the same physical scale (e.g., # vs % correct)

3. Deviations  similar for different values of (yi − ̂yi) y

2. Observations are independent or “exchangeable”

(variability independent of mean)



Regression: estimate it
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Estimate the model in Python

y = α + β x

Task performance  (firing rate)= α + β

intercept
slope

Python



Regression: estimate it
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Estimate the model in Python

y = α + β x

Task performance  (firing rate)= α + β

intercept
slope

Interpret parameters …



Regression: plot it

Python



Regression: Interpret parameters

Intercept: 15.02  

• when firing rate ( ) is 0, the 
task performance is 

Slope:      0.016 

• for each one-unit increase 
in firing rate, the task 
performance increases by 
0.016.

α =

x

β =

19

≈ 15

Q: Evidence of a linear relationship between task performance and 
firing rate?



Regression: Interpret parameters

Q: Evidence of a linear relationship between task performance and 
firing rate?

A: Examine the p values

p-value: how much evidence we have to reject the null hypothesis ( )H0

Here,  is that ,  H0 α = 0 β = 0

Typically, we reject  if  H0 p < 0.05

The probability of observing the data, or something more 
extreme, under the null hypothesis is less than 5%.

The observed data is unlikely to have occurred by random 
chance alone, assuming the null hypothesis is true.



Regression: Interpret parameters

Q: Evidence of a linear relationship between task performance and 
firing rate?

A: Examine the p values

Intercept: 15.02,  

• Reject  that intercept = 0 

Slope:      0.016,  

• No evidence to reject  that slope = 0.

α = p = 0.001

H0

β = p = 0.969

H0

Note: Never accept .H0 We cannot conclude slope = 0

Instead: “We fail to reject the null hypothesis that slope = 0.”





Regression: conclusion (for now)

We considered this model: 

Task performance  (firing rate) 

We found no evidence to reject the null hypothesis that . 

We conclude that, in this model, we have no evidence of a 
relationship between task performance and firing rate. 

= α + β

β = 0
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Now what?



Regression: continued

Q: Now what? 

A: Look for confounds. 

We learn that age impacts task performance
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New variables:

y task performance

firing ratex1

x2 age



Analyze the data (1)

Plot it task performance versus age
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Visual inspection:
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Analyze the data (2)

Compute the correlation between task performance and age.

Cxy =

Conclusion:

Python



Analyze the data (3): Regression
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Model y = α + β1 x1 + β2 x2

Task performance  (firing rate)  (age) = α + β1 + β2

parameter of interest
confound

Q: What is the relationship between task performance (y) and  
firing rate ( ) after accounting for the confound of age ( )?x1 x2



Analyze the data (3): Regression
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Python



Regression: Interpret parameters

Intercept:                       

Slope (firing rate):        

Slope (age):                  

α = p =

β1 = p =

β2 = p =
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Regression: Plot the model
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Python



Regression: conclusion (modified)

We considered the updated model: 

Task performance  (firing rate)  (age) 

We found 

We conclude that

= α + β1 + β2
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What is a “good model” ?

A: A model that makes predictions  very close to . 

To do so, add more predictors (and parameters) to the model.

̂y y

32

y = α + β x1 + β x2 + β x3 + β x4 + β x5 + …

No reduction in complexity.

We want a simple theoretical pattern (e.g., line) for our ragged data

parsimony of parameters (only include what we need)



What is a “good model” ?

Parsimonious model 
•  easier to think about 
•  probably makes better prediction

Modeling is an art

“All models are wrong but some are useful.” [George Box]

eternal truth not within our grasp use those

Check your model look at errors or deviations  (yi − ̂yi)

no formal procedure, requires imagination

important but not covered here



What is a model?

In MA665:

y = mx + b



What is computational neuroscience?

Mathematics:
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1-page summary of the HH model:
The Hodgkin-Huxley model of a neuron consists of a system of four coupled first-order di�erential equations.
The four dependent variables are (V , n, m, h); these are, in order, the membrane potential, a gating variable
for the potassium channel, and two gating variables for the sodium channel. Set V = 0 outside the cell
(though Hodgkin and Huxley adopted a di�erent voltage convention) and the di�erential equations take the
form:

C
dV

dt
= Iinput(t)� ḡKn

4(V � VK)� ḡNam
3h(V � VNa)� ḡL(V � VL) (1)

dn

dt
= �n� n1(V )

⌧n(V )
(2)

dm

dt
= �m�m1(V )

⌧m(V )
(3)

dh

dt
= �h� h1(V )

⌧h(V )
, (4)

where the externally applied current Iinput(t) is a prescribed function. Typical values of the parameters are:

Nernst potentials: VK = �77mV , VNa = +60mV , VL = �54.4mV

maximum conductances: ḡK = 36µmho , ḡNa = 120µmho , ḡL = 0.3µmho ,

and C = 1 nF (based on a neuron with 0.1mm2 area). The nonlinear functions µ1(V ), ⌧µ(V ) — where
µ = n,m, h — are plotted in Figure 1, and are based on experimental measurements. Often, the di�erential
equations (2)–(4) for the gating variables are written instead in the form:

dµ

dt
= ↵µ(V )

�
1� µ

�
� �µ(V )µ whereµ = n,m, h .

The V -dependent functions are related by:

µ1(V ) =
↵µ(V )

↵µ(V ) + �µ(V )
, ⌧µ(V ) =

1

↵µ(V ) + �µ(V )
for µ = n,m, h .

A typical choice of the ↵µ(V ) and �µ(V ) functions, again based on fitting data, is:

↵n(V ) =
0.1� 0.01(V + 65)

e1�0.1(V+65) � 1
↵m(V ) =

2.5� 0.1(V + 65)

e2.5�0.1(V+65) � 1
↵h(V ) = 0.07e(�V�65)/20

�n(V ) = 0.125e(�V�65)/80 �m(V ) = 4e(�V�65)/18 �h(V ) =
1

e3�0.1(V+65) + 1

where ↵µ and �µ are measured in ms�1, and V in mV. Note that one must always be careful to use ↵µ(V )
and �µ(V ) functions that are consistent with the voltage convention.

−100 mV 0mV +40 mV

0

0.5

1

n
∞
(V)

m
∞
(V)

h
∞
(V)

−100 mV 0mV +40 mV

0

10 ms

τn(V)
τm(V)

τh(V)

Figure 1: Plots of the functions µ�(V ) and ⇥µ, where µ = n,m, h.
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Statistics:

Data:



Aside: C4R
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Aside: Sample Size

https://mark-kramer.github.io/METER-Units/ 
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https://mark-kramer.github.io/METER-Units/


Aside: Sample Size

Q: Is there a relationship between x and lifespan? 

A1: Do an experiment with sample size N. 

A2: Fit a line… 

 

 

p = 

Conclusion:

lifespan = β0 + β1 x

β1 =
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Aside: Sample Size

Q: Now what? 

A: Maybe we failed to collect enough data to detect a relationship. 

Idea: 
– Reuse the data & model 
– See how sample size (N) impacts conclusions.
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Aside: Sample Size

Consider biomarker x

40
Approximately normal

mean = 0.03

standard deviation = 0.71



Aside: Sample Size

We can draw random values of x from this normal distribution

41Draw 10 or 100 or 1000 or 10,000 values for x …



Aside: Sample Size

Consider model:    lifespan = β0 + β1 x

73.65 (intercept) 
0.91 (slope)

β0 =
β1 =

To simulate new lifespans:

new lifespan = β0 + β1x

• Ask the model

There’s error in our model

Normally distributed: 
mean  
stand. dev. 

≈ 0
≈ 7

+ error

• Include the error



Aside: Sample Size

Create new data: 

• Pick new sample size N*

43

• Draw new biomarkers x 

• Draw new lifespans 
  new lifespan =   + error β0 + β1x

Key insight: Is there a relationship between x & lifespan in the new data? 

new lifespan = β*0 + β*1 new x

Q: At what new sample size N* do you reliably detect a relationship?

Fit a (new) model:

… is p < 0.05 reliably. 


