Regression

A Practical Introduction

Instructor: Mark Kramer



Outline

A (very) practical introduction to linear regression

Main idea: model data as a line.
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Here 1s my model

y=mx+b



Data
Task performance (y)
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Analyze the data (1)

Plot i1t ...

Visual inspection:



Analyze the data (2)

Compute a statistic? Correlation x, and y,: data at index n

1 11
D =N Z<x -9, — )

Y n=1 T

mean of y
mean of x

number of data point! T

standard deviation of x
standard deviation of y
sum from indices 1 to N

| sum the values of x for all
mean of x X = — Z Xn. indices, then divide by the total
N .
n=1 number of points summed (V)



Analyze the data (2)

Compute a statistic? Correlation x, and y,: data at index n

1 11
D =N Z<x -9, — )

Y n=1 T

mean of y
mean of x

number of data point! T

standard deviation of x
standard deviation of y
sum from indices 1 to N

] & 3 -
L Z(xn _ %) characterizes the extent of

: 2
variance of x c- = .
X fluctuations about the mean

standard deviation of x c.=1/0



Analyze the data (2)

Compute a statistic? Correlation

sum from indices 1 to N

1421311 1 1 Int 1 1 1 1 1 1 1 IN

K

* kXK *

%K
1124341 1 1 fInd 1 1§ 1 1 1 1 IN

then sum & scale = C,,



Analyze the data (2)

Intuition Correlation
1 11
x, —X)(y, —
o N%%;< D0, = )
Assumex =y =0
Reminder:
c 1 11 | X
xy N o, Gy ; Xn Yn o;cz - F Zl(xn - 5)2
What if x and y match? Cy= 1
What if x equals -)? C,, = -1

P

What if x and y are random? wy ~ 0



Analyze the data (2)

Compute a statistic? Correlation
1 11
x, —X)(y, —
o N%%;< D0, = )

XY

Conclusion:



Analyze the data (3): Regression

Motivation: Characterize relationships in the data.

To do so: build a statistical model containing

 systematic effects: things we know/observe that can explain
the data

 random effects: unknown / haphazard variations that we
make no attempt to model or predict
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Regression

Goal: describe succinctly the systematic variations in the data,
in a way that’s generalizable to other related observations
(e.g., by another experimenter, at another time, in another
place).

random effects we don’t model
Model y=a+ fx |+noise

y outcome of measured system (behavior)

predictor of measured system  (firing rate)

a, p parameters

Note: linear relationship
11



Regression

Note: we cannot observe y exactly ... measurement error

We observe approximately linear relationship (corrupted by noise).

Challenge: Choose values (a, b) for parameter (a, ) in our model
that “best describe” the data.

We observe yy, ¥,, Vs, ... and X, X,, X3, ... and fit our model
y=a+ px

to choose the values (a, b) for parameter (a, /)



Regression

If we have (a, b), then we can compute model predictions:
j\;l = a + bxl

y2:a+bX2

?

Choose (a, b) to make model predictions y;, y,, ...to the

observed outcomes yy, ¥, ...

Note: Model predictions y, ,, ... do not reproduce exactly
the observed outcomes yy, y,, ...
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Regression )

Choose (a, b) to make model predictions y,, y, ...to the

observed outcomes yy, y,, ...

Q: “close” ?

A: A measure of discrepancy or distance
S,(v,9) = Z (y; — 9, “least squares”
i

Choose (a, b) to minimize S,(y, y)

to minimize the discrepancy between y and y
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Regression
o e . A _ A 2
Minimize S,(y,y) = Z (v, — V) assumes
i

1. All observation on the same physical scale (e.g., # vs % correct)
2. Observations are independent or “exchangeable”

3. Deviations (y; — y,) similar for different values of y

(variability independent of mean)
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Regression: estimate it

Estimate the model 1n Python
y=a+px

Task performance = a + f (firing rate)

intercept T

slope

16



Regression: estimate it

Estimate the model in Python

y 0 4 —|— ﬁx — OLS Regression Results
Dep. Variable: y R-squared:
Mot OLS Adj. R-squared:
Task performance = a + S (firing rate) Least Squares  F-statistic:
vavcc. Mon, 07 Oct 2024 Prob (F-statistic):
T Time: 12:40:56  Log-Likelihood:
. No. Observations: 50 AIC:
1ntercept Df Residuals: 48  BIC:
Df Model: 1
SlOpe Covariance Type: nonrobust
std err t P>|t]|
Intercept 15.0190 4.037 3.720 0.001
X 0.0158 0.404 0.039 0.969
Omnibus: 4.793 Durbin-Watson:
Interpret parameters Prob(Omnibus): 0.091 Jarque-Bera (JB):
Skew: 0.459 Prob(JB):
Kurtosis: 2.153 Cond. No.



Regression: plot it




Regression: Interpret parameters

Intercept: a = 15.02

* when firing rate (x) 1s 0, the
task performance is ~ 15

Slope: S =0.016

 for each one-unit increase
in firing rate, the task

performance increases by
0.016.
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Q: Evidence of a linear relationship between task performance and

firing rate?
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Regression: Interpret parameters

Q: Evidence of a linear relationship between task performance and
firing rate?

A: Examine the p values

p-value: how much evidence we have to reject the null hypothesis (H))

Here, Hyisthata =0, =0

Typically, we|reject Hy if p < 0.05

The probability of observing the data, or something more
extreme, under the null hypothesis is less than 5%.

The observed data 1s unlikely to have occurred by random
chance alone, assuming the null hypothesis 1s true.




Regression: Interpret parameters

Q: Evidence of a linear relationship between task performance and
firing rate?

OLS Regression Results

A: Examine the p values T T e

Dep. Variable: y R-squared:
Mode l: OLS Adj. R-squared:
. . . Method: Least Squares  F-statistic:
Intercept' a = 15029 p - 0001 Date: Mon, 07 Oct 2024 Prob (F-statistic):
Time: 12:40:56 Log-Likelihood:
No. Observations: 50 AIC:
. . Df Residuals: 48 BIC:
* Reject Hyy that intercept = 0 D Model: 1
Covariance Type: nonrobust
coef std err t
Slope: pf=0.016,p=0969 —————pf
- Intercept 15.0190 4.037 3.720
X 0.0158 0.404 0.039

* No evidence to reject Hy that slope = 0.

Note: Never accept H,,. We-cannet-eoncludeslope—0—
Instead: “We fail to reject the null hypothesis that slope = (.”




CASMA 665 A1l -
Introduction to
Modeling and Data
Analysis in
Neuroscience

Student

https://go.blueja.io/ie-TXlIb1kyOD50Y_Fémqgg



Regression: conclusion (for now)

We considered this model:

Task performance = a + f (firing rate)

We found no evidence to reject the null hypothesis that f = 0.

We conclude that, 1n this model, we have no evidence of a
relationship between task performance and firing rate.

Now what?
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Regression: continued

Q: Now what?
A: Look for confounds.

We learn that age impacts task performance

New variables:

% task performance

firing rate

A2 age

24



Analyze the data (1)

Plot 1t task performance versus age
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Analyze the data (2)

Compute the correlation between task performance and age.

XY

Conclusion:
26



Analyze the data (3): Regression

Model y=a+pix +prx

Task performance = (ﬁring rate) +H /[, (age)

parameter of interest

confound

Q: What 1s the relationship between task performance (y) and
firing rate (x;) after accounting for the confound of age (x,)?
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Analyze the data (3): Regression

28



Regression: Interpret parameters

Intercept: o= p =

Slope (firing rate): ;=  p =

Slope (age): b= p=

coef std err t P>|t|
Intercept 0.0656 0.178 0.368 0.714
firing_rate 0.0466 0.016 2.961 0.005

age 0.9977 0.006 177.974 0.000



Regression: Plot the model

30



Regression: conclusion (modified)

We considered the updated model:

Task performance = a + f; (firing rate) + f, (age)

We found

We conclude that
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What is a “good model” ?

A: A model that makes predictions y very close to y.

To do so, add more predictors (and parameters) to the model.
y=a+pxi+px+px3+px,+Pxs+ ...

No reduction in complexity.
We want a simple theoretical pattern (e.g., line) for our ragged data

parsimony of parameters (only include what we need)

32



What is a “good model” ?

Parsimonious model
e casier to think about
» probably makes better prediction

Modeling 1s an art no formal procedure, requires imagination

4[] models are wrong |but some are |George Box]

¢

eternal truth not within our grasp use those

Check your model look at errors or deviations (y; — ;)

important but not covered here



What is a model?

In MA665:

TateﬁalLQ %___’_I%_Vt_vg_

Y= mx+b




What is computational neuroscience?

Mathematics:

dVv
O~
dt

dn
dt
dm
dt
dh
dt

Statistics:

Data:

Task Performance [a.u.]

Iinput (t)
n — Neo (V)

Tn(V)

OLS Regression Results

— gKn4(V — VK) - gNamgh(V — VNa) — g (V _ VL)

. Dep. Variable: y R-squared: 0.00¢
. m Moo (V) Model: OLS Adj. R-squared: -0.021
‘/7 Method: Least Squares F-statistic: 0.001521
/T}TL( ) Date: Mon, @7 Oct 2024 Prob (F-statistic): 0.96¢
Time: 12:40:56 Log-Likelihood: -119.04
}l - }lCXD (‘77) No. Observations: 50 AIC: 242.1
- s Df Residuals: 48 BIC: 245.¢
Th (V) Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
o .720 0.001 6.901 23.137
20 - ° o [ .039 0.969 -0.797 0.82¢
o i
o .793  Durbin-Watson: 1.865
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Aside: C4R

@ @C4R Home AboutUs+~ Resourcesv Blog Contact Join ¥ '3:

Community for Rigor

Better Science Every Day

Welcome to the Community for Rigor! We are a free, open
resource to help researchers of all kinds learn, practice, and
promote scientific rigor.



Aside: Sample Size

https://mark-kramer.github.10/METER-Units/

BU METER

Sample Size - How much data is enough for your experiment?

¢ |nteractive notebook

Evaluate your evaluation methods! A key to meaningful inference.

¢ |nteractive notebook

Putting the p-value in context: p<0.05, but what does it REALLY mean?

e Static notebook

Reproducible exploratory analysis: Mitigating multiplicity when mining
data

e Static notebook



https://mark-kramer.github.io/METER-Units/

Aside: Sample Size

Q: Is there a relationship between x and lifespan?

Al: Do an experiment with sample size N.

A2: Fit a line...

lifespan = By + f x

Conclusion:

38



Aside: Sample Size
Q: Now what?

A: Maybe we failed to collect enough data to detect a relationship.

Idea:
—Reuse the data & model
—See how sample size (N) impacts conclusions.

39



Aside: Sample Size

Consider biomarker x

mean = 0.03
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Biomarker x

Approximately normal
40



Aside: Sample Size

We can draw random values of x from this normal distribution

Normal Distribution

0.5 1

O
H
1

o
w

Probability Density

o
(V)

0.1 A

0.0 -

X

Draw 10 or 100 or 1000 or 10,000 values for x ... "



Aside: Sample Size

Consider model: lifespan = B+ p; x

Lifespan (years)

Py = 73.65 (intercept)
p = 0.91 (slope)

There’s error 1n our model

o | Normally distributed:
mean =~ ()
stand. dev. ~ 7

To simulate new lifespans:

e Ask the model
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Genetic biomarker x ¢ InChlde the CITOTY

new lifespan = f, + [,x + error



Aside: Sample Size

Normal Distribution

Create new data:

* Pick new sample size N*

Probability Density

e Draw new biomarkers x

* Draw new lifespans
new lifespan = [, + f,x + error

Key insight: Is there a relationship between x & lifespan 1n the new data?

Fita (new) model:  new lifespan = f* + " new x

Q: At what new sample size N* do you reliably detect a relationship?

... 18 p <0.05 rehably.
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