Regression A Practical Introduction

Instructor: Mark Kramer

1

Outline

A (very) practical introduction to linear regression

Main idea: model data as a line.

Here is my data Here is my model

$$
y = mx + b
$$

Data

Task performance (y)

Brain activity (x)

[Kwon et al, bioRxiv, 2024] [Kim et al, Nature, 2023]

Plot it ...

Python

Visual inspection:

Compute a statistic? $C_{xy} =$ 1 *N* 1 *σx* 1 *σy N* ∑ *n*=1 $(x_n - \bar{x})(y_n - \bar{y})$ number of data points standard deviation of $x \parallel \parallel$ mean of $x \parallel$ standard deviation of *y* mean of *y* <u>Correlation</u> x_n and y_n : data at index *n* sum from indices 1 to N

mean of x
$$
\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n
$$

sum the values of *x* for all *n* indices, then divide by the total number of points summed (*N*)

Compute a statistic? $C_{xy} =$ 1 *N* 1 *σx* 1 *σy N* ∑ *n*=1 $(x_n - \bar{x})(y_n - \bar{y})$ number of data points standard deviation of $x \parallel \parallel$ mean of $x \parallel$ standard deviation of *y* mean of *y* sum from indices 1 to N <u>Correlation</u> x_n and y_n : data at index *n*

x

variance of x
$$
\sigma_x^2 = \frac{1}{N} \sum_{n=1}^N (x_n - \overline{x})^2
$$

characterizes the extent of fluctuations about the mean

standard deviation of *x* $\sigma_{\rm x} =$

Compute a statistic? Correlation $C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$

sum from indices 1 to N

then sum & scale = C_{xy}

Intuition Correlation

$$
C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})
$$

Assume
$$
\bar{x} = \bar{y} = 0
$$

$$
C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} x_n y_n
$$

Reminder:
$$
\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2
$$

What if *x* and *y* match? What if x equals $-y$? What if *x* and *y* are random?

$$
C_{xy} = 1
$$

$$
C_{xy} = -1
$$

$$
C_{xy} \approx 0
$$

 $n=1$

Compute a statistic? Correlation

$$
C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})
$$

$$
C_{xy} =
$$

Conclusion:

Analyze the data (3): Regression

Motivation: Characterize relationships in the data.

To do so: build a *statistical* model containing

- **systematic effects**: things we know/observe that can explain the data
- **random effects**: unknown / haphazard variations that we make no attempt to model or predict

Goal: describe <u>succinctly</u> the systematic variations in the data, in a way that's generalizable to other related observations (e.g., by another experimenter, at another time, in another place).

random effects we don't model

Model
$$
y = \alpha + \beta x
$$
 + noise

y outcome of measured system x predictor of measured system (firing rate) α, β parameters (behavior)

Note: linear relationship

Note: we **cannot** observe y exactly … measurement error

We observe approximately linear relationship (corrupted by noise).

Challenge: Choose values (a, b) for parameter (α, β) in our model that "best describe" the data.

We observe y_1, y_2, y_3, \ldots and x_1, x_2, x_3, \ldots and fit our model

$$
y = \alpha + \beta x
$$

to choose the values (a, b) for parameter (α, β)

If we have (a, b) , then we can compute <u>model predictions</u>:

$$
\hat{y}_1 = a + bx_1
$$
\n
$$
\hat{y}_2 = a + bx_2
$$
\n
$$
\vdots
$$
\nChoose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, \dots$ close to the observed outcomes y_1, y_2, \dots

Note: Model predictions $\hat{y}_1, \hat{y}_2, \dots$ do **not** reproduce exactly the observed outcomes $y_1, y_2, ...$ ̂

Choose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, \ldots$ close to the observed outcomes $y_1, y_2, ...$ ̂

Q: "close" ?

A: A measure of discrepancy or distance

$$
S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2
$$
 "least squares"

Choose (a, b) to <u>minimize</u> $S_2(y, \hat{y})$

to minimize the discrepancy between *y* and *y*

?

Minimize
$$
S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2
$$
 assumes

- 1. All observation on the same physical scale (e.g., $\#$ vs $\%$ correct)
- 2. Observations are independent or "exchangeable"
- 3. Deviations $(y_i \hat{y}_i)$ similar for different values of *y* ̂

(variability independent of mean)

Regression: estimate it

Estimate the model in Python

```
y = \alpha + \beta xTask performance = \alpha + \beta (firing rate)
    intercept
             slope
```


Regression: estimate it

Estimate the model in Python

Regression: plot it

Intercept: $\alpha = 15.02$

• when firing rate (x) is 0, the task performance is ≈ 15

Slope:
$$
\beta = 0.016
$$

• for each one-unit increase in firing rate, the task performance increases by 0.016.

19 **Q:** Evidence of a linear relationship between task performance and firing rate?

- **Q:** Evidence of a linear relationship between task performance and firing rate?
- A: Examine the p values

p-value: how much evidence we have to reject the null hypothesis (H_0)

Here, H_0 is that $\alpha = 0$, $\beta = 0$

Typically, we reject H_0 if $p < 0.05$

The probability of observing the data, or something more extreme, under the null hypothesis is less than 5%.

The observed data is <u>unlikely</u> to have occurred by random chance alone, assuming the null hypothesis is true.

- **Q:** Evidence of a linear relationship between task performance and firing rate?
- A: Examine the p values <u>Intercept</u>: $\alpha = 15.02, p = 0.001$ • Reject H_0 that intercept = 0 Slope: $\beta = 0.016, p = 0.969$

• No evidence to reject H_0 that slope = 0.

Note: Never accept H_0 . We cannot conclude slope = 0 Instead: "*We fail to reject the null hypothesis that slope = 0.*"

CAS MA 665 A1-Introduction to Modeling and Data Analysis in Neuroscience

Student

https://go.blueja.io/ie-TXIIb1kyOD50Y_F6mqg

Regression: conclusion (for now)

We considered this model:

Task performance $= \alpha + \beta$ (firing rate)

We found <u>no evidence to reject the null hypothesis</u> that $\beta = 0$.

We conclude that, in this model, we have no evidence of a relationship between task performance and firing rate.

Now what?

Regression: continued

Q: Now what?

A: Look for confounds.

We learn that age impacts task performance

New variables:

y task performance firing rate *x*¹ x_2 age

Plot it task performance versus age

Visual inspection:

Compute the correlation between task performance and age.

$$
C_{xy} =
$$

Conclusion:

Analyze the data (3): Regression

$$
\text{Model} \qquad \qquad y = \alpha + \beta_1 x_1 + \beta_2 x_2
$$

Task performance =
$$
\alpha + \beta_1
$$
 (firing rate) + β_2 (age)
parameter of interest
confound

Q: What is the relationship between task performance (*y*) and firing rate (x_1) after accounting for the confound of age (x_2) ?

Analyze the data (3): Regression

Intercept: $\alpha = p =$

Slope (firing rate): $\beta_1 = p =$

Slope (age): $\beta_2 = p =$

Regression: Plot the model

Regression: conclusion (modified)

We considered the <u>updated model</u>:

Task performance = $\alpha + \beta_1$ (firing rate) + β_2 (age)

We found

We conclude that

What is a "good model" ?

A: A model that makes predictions \hat{y} very close to y.

To do so, add more predictors (and parameters) to the model.

$$
y = \alpha + \beta x_1 + \beta x_2 + \beta x_3 + \beta x_4 + \beta x_5 + \dots
$$

No reduction in complexity.

We want a simple theoretical pattern (e.g., line) for our ragged data

parsimony of parameters (only include what we need)

What is a "good model" ?

Parsimonious model

- easier to think about
- probably makes better prediction

What is a model?

What is computational neuroscience? T is the Hodge of a neuron consistence of a system of α system of α **The four dependent variables are variables when** \mathbf{v} **is computational neuroscience . The members of members of** \mathbf{v}

Mathematics: $\mathbf{h} \in \mathcal{A}$

 12

ۈ

10

Firing rate [Hz]

11

8

Data:

Aside: C4R

Home About Us ~ Resources ~ Blog Contact Join

Community for Rigor

Better Science Every Day

Welcome to the Community for Rigor! We are a free, open resource to help researchers of all kinds learn, practice, and promote scientific rigor.

https://mark-kramer.github.io/METER-Units/

BU METER

Sample Size - How much data is enough for your experiment?

• Interactive notebook

Evaluate your evaluation methods! A key to meaningful inference.

• Interactive notebook

Putting the p-value in context: p<0.05, but what does it REALLY mean?

• Static notebook

Reproducible exploratory analysis: Mitigating multiplicity when mining data

 $\overline{}$

• Static notebook

Q: Is there a relationship between x and lifespan?

A1: Do an experiment with sample size N.

A2: Fit a line…

 $lifespan = \beta_0 + \beta_1 x$

 $\beta_1 =$

 $p =$

Conclusion:

Q: Now what?

A: Maybe we failed to collect enough data to detect a relationship.

Idea:

- –Reuse the data & model
- See how sample size (N) impacts conclusions.

Consider biomarker x

Approximately normal

We can draw random values of x from this normal distribution

Draw 10 or 100 or 1000 or 10,000 values for $x_{...}$ 41

Consider <u>model</u>: *lifespan* = $\beta_0 + \beta_1 x$

new lifespan = $\beta_0 + \beta_1 x$ + error

Create new data:

- Pick new sample size N*
- Draw new biomarkers x
- Draw new lifespans new lifespan = $\beta_0 + \beta_1 x$ + error

Key insight: Is there a relationship between x & lifespan in the new data?

Fit a (new) model: new lifespan = $\beta_0^* + \beta_1^*$ new x

Q: At what new sample size N^{*} do you reliably detect a relationship? \ldots is $p < 0.05$ reliably.