Regression A Practical Introduction

Instructor: Mark Kramer

1

Outline

A (very) practical introduction to linear regression

Main idea: model data as a line.

Here is my model

$$y = mx + b$$

Data

Task performance (y)

Brain activity (x)

[Kwon et al, bioRxiv, 2024]

[Kim et al, Nature, 2023]

Plot it ...

Python

Visual inspection:

<u>Correlation</u> x_n and y_n : data at index *n* Compute a statistic? $C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$ number of data points standard deviation of x mean of y mean of *y* mean of xstandard deviation of y sum from indices 1 to N

mean of
$$x$$
 $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$

sum the values of x for all nindices, then divide by the total number of points summed (N)

Compute a statistic? Correlation x_n and y_n : data at index n $C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$ number of data points standard deviation of x is the interval of mean of *y* standard deviation of *y* sum from indices 1 to N

variance of
$$x$$
 $\sigma_x^2 = \frac{1}{N} \sum_{n=1}^N (x_n - \overline{x})^2$

characterizes the extent of fluctuations about the mean

standard deviation of x $\sigma_x = \sqrt{2}$

Compute a statistic? <u>Correlation</u> $C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$

sum from indices 1 to N

then sum & scale = C_{xy}

Intuition

Correlation

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$

Assume
$$\bar{x} = \bar{y} = 0$$

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^N x_n y_n$$
Reminder:

$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^N (x_n - \bar{x})^2$$

What if *x* and *y* match? What if *x* equals -*y*? What if *x* and *y* are random?

 $C_{xy} = 1$ $C_{xy} = -1$ $C_{xy} \approx 0$

N

Compute a statistic? <u>Correlation</u>

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$

$$C_{xy} =$$

Conclusion:

Analyze the data (3): Regression

Motivation: Characterize relationships in the data.

To do so: build a *statistical* model containing

• systematic effects: things we know/observe that can explain the data

• random effects: unknown / haphazard variations that we make no attempt to model or predict

<u>Goal</u>: describe <u>succinctly</u> the systematic variations in the data, in a way that's <u>generalizable</u> to other related observations (e.g., by another experimenter, at another time, in another place).

random effects we don't model

Model
$$y = \alpha + \beta x + noise$$

youtcome of measured system(behavior)xpredictor of measured system(firing rate) α, β parameters

Note: linear relationship

<u>Note</u>: we **cannot** observe y exactly ... measurement error

We observe approximately linear relationship (corrupted by noise).

<u>Challenge</u>: Choose values (a, b) for parameter (α, β) in our model that "best describe" the data.

We observe y_1, y_2, y_3, \dots and x_1, x_2, x_3, \dots and fit our model

$$y = \alpha + \beta x$$

to choose the values (a, b) for parameter (α, β)

If we have (a, b), then we can compute <u>model predictions</u>:

$$\hat{y}_1 = a + bx_1$$

$$\hat{y}_2 = a + bx_2$$

$$\vdots$$
Choose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, \dots$ close to the observed outcomes y_1, y_2, \dots

<u>Note</u>: Model predictions $\hat{y}_1, \hat{y}_2, \dots$ do **not** reproduce exactly the observed outcomes y_1, y_2, \dots

Choose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, ...$ close to the observed outcomes $y_1, y_2, ...$

Q: "close" ?

A: A measure of discrepancy or distance

$$S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2$$
 "least squares"

Choose (a, b) to minimize $S_2(y, \hat{y})$

to <u>minimize</u> the discrepancy between y and \hat{y}

?

Minimize
$$S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2$$
 assumes

- 1. All observation on the same physical scale (e.g., # vs % correct)
- 2. Observations are independent or "exchangeable"
- 3. Deviations $(y_i \hat{y}_i)$ similar for different values of y

(variability independent of mean)

Regression: estimate it

Estimate the model in Python

```
y = \alpha + \beta x
Task performance = \alpha + \beta (firing rate)
intercept
slope
```


Regression: estimate it

Estimate the model in Python

Regression: plot it

Intercept: $\alpha = 15.02$

• when firing rate (x) is 0, the task performance is ≈ 15

Slope:
$$\beta = 0.016$$

• for each one-unit increase in firing rate, the task performance increases by 0.016.

Q: Evidence of a linear relationship between task performance and firing rate?

- **Q:** Evidence of a linear relationship between task performance and firing rate?
- **A:** Examine the <u>p values</u>

p-value: how much evidence we have to reject the null hypothesis (H_0)

Here, H_0 is that $\alpha = 0, \beta = 0$

Typically, we reject H_0 if p < 0.05

The probability of observing the data, or something more extreme, under the null hypothesis is less than 5%.

The observed data is <u>unlikely</u> to have occurred by random chance alone, assuming the null hypothesis is true.

Q: Evidence of a linear relationship between task performance and firing rate?

OLS Regression Results

P>|t|

0.001

0.969

t

- A: Examine the <u>p values</u> Dep. Variable: R-squared: V 0LS Model: Adj. R-squared: Least Squares F-statistic: Method: Intercept: $\alpha = 15.02, p = 0.001$ Mon, 07 Oct 2024 Prob (F-statistic): Date: Time: Log-Likelihood: 12:40:56 No. Observations: 50 AIC: Df Residuals: BIC: 48 • Reject H_0 that intercept = 0 Df Model: 1 Covariance Type: nonrobust std err coef $\beta = 0.016, p = 0.969$ Slope: Intercept 15.0190 4.037 3.720 0.0158 0.404 0.039 Х • No evidence to reject H_0 that slope = 0.
 - <u>Note</u>: Never accept H_0 . We <u>cannot conclude slope = 0</u> Instead: "We fail to reject the null hypothesis that slope = 0."

CAS MA 665 A1 -Introduction to Modeling and Data Analysis in Neuroscience

Student

https://go.blueja.io/ie-TXIIb1kyOD50Y_F6mqg

Regression: conclusion (for now)

We considered this model:

Task performance $= \alpha + \beta$ (firing rate)

We found <u>no evidence to reject the null hypothesis</u> that $\beta = 0$.

We conclude that, in this model, we have no evidence of a relationship between task performance and firing rate.

Now what?

Regression: continued

Q: Now what?

A: Look for confounds.

We learn that <u>age</u> impacts task performance

New variables:

ytask performance x_1 firing rate x_2 age

Plot it task performance versus age

Visual inspection:

Compute the correlation <u>between task performance and age</u>.

$$C_{xy} =$$

Conclusion:

Analyze the data (3): Regression

Model
$$y = \alpha + \beta_1 x_1 + \beta_2 x_2$$

Task performance
$$= \alpha + \beta_1$$
 (firing rate) $+ \beta_2$ (age)
parameter of interest
confound

Q: What is the relationship between task performance (*y*) and firing rate (x_1) after accounting for the confound of age (x_2) ?

Analyze the data (3): Regression

<u>Intercept</u>: $\alpha = p =$

Slope (firing rate):
$$\beta_1 = p =$$

<u>Slope</u> (age): $\beta_2 = p =$

	coef	std err	t	P> t		
Intercept	0.0656	0.178	0.368	0.714		
firing_rate	0.0466	0.016	2.961	0.005		
age	0.9977	0.006	177.974	0.000		

Regression: Plot the model

Regression: conclusion (modified)

We considered the <u>updated model</u>:

Task performance $= \alpha + \beta_1$ (firing rate) $+ \beta_2$ (age)

We found

We conclude that

What is a "good model" ?

A: A model that makes predictions \hat{y} very close to y.

To do so, add more predictors (and parameters) to the model.

$$y = \alpha + \beta x_1 + \beta x_2 + \beta x_3 + \beta x_4 + \beta x_5 + \dots$$

No reduction in complexity.

We want a simple theoretical pattern (e.g., line) for our ragged data

parsimony of parameters (only include what we need)

What is a "good model"?

Parsimonious model

- easier to think about
- probably makes better prediction

What is a model?

What is computational neuroscience?

Mathematics:

	$\frac{dn}{dt}$	= -	$\frac{n-n_{\rm c}}{\tau_n}$	$\frac{\infty(V)}{V}$		OLS Regression Results							
	\underline{dm}	= -	$\frac{m-m}{m-m}$	$n_{\infty}(V)$)	Dep. Variable: Model:	======		9 OLS	R-squa Adj. R	red: squared:		-0.021 0.001
	dt		$\tau_m(V)$			Method: Date: Time:	Мо	Least Squares Mon, 07 Oct 2024 12:40:56		F-statistic: Prob (F-statistic): Log-Likelihood:			0.001521 0.969 -119.04
	$\frac{dh}{dt}$	= -	$\frac{h-h_{\rm c}}{\tau_h(1)}$	$\frac{O(V)}{V}$,	No. Observation Df Residuals: Df Model: Covariance Type	:	no	50 48 1 onrobust	AIC: BIC:			242.1 245.9
Statistics	•						coef	std e	err	t	P> t	[0.025	0.975]
	•	20 -		•		•				3.720 0.039	0.001 0.969	6.901 -0.797	23.137 0.829
		- 18 - [a.r.]	•	•	• '	•		•	.793 .091 .459 .153	Durbin Jarque Prob(J Cond.			1.865 3.249 0.197 108.
Data:		- 91 -	•	••	••		•						

12 -

8

9

10

Firing rate [Hz]

11

Aside: C4R

Home About Us - Resources - Blog Contact Join

2

Community for Rigor

Better Science Every Day

Welcome to the Community for Rigor! We are a free, open resource to help researchers of all kinds learn, practice, and promote scientific rigor.

https://mark-kramer.github.io/METER-Units/

BU METER

Sample Size - How much data is enough for your experiment?

• Interactive notebook

Evaluate your evaluation methods! A key to meaningful inference.

• Interactive notebook

Putting the p-value in context: p<0.05, but what does it REALLY mean?

• Static notebook

Reproducible exploratory analysis: Mitigating multiplicity when mining data

21

• Static notebook

Q: Is there a relationship between x and lifespan?

A1: Do an experiment with sample size N.

A2: Fit a line...

lifespan = $\beta_0 + \beta_1 x$

 $\beta_1 =$

p =

Conclusion:

Q: Now what?

A: Maybe we failed to collect enough data to detect a relationship.

Idea:

- -Reuse the data & model
- -See how sample size (N) impacts conclusions.

Consider biomarker x

Approximately normal

We can draw <u>random values of x</u> from this normal distribution

Draw 10 or 100 or 1000 or 10,000 values for x ...

Consider <u>model</u>: *lifespan* = $\beta_0 + \beta_1 x$

new lifespan = $\beta_0 + \beta_1 x$ + error

Create new data:

- Pick new sample size N*
- Draw new biomarkers x
- Draw new lifespans new lifespan = $\beta_0 + \beta_1 x + \text{error}$

Key insight: Is there a relationship between x & lifespan in the new data?

Fit a (new) model: new lifespan = $\beta_0^* + \beta_1^*$ new x

Q: At what new sample size N* do you reliably detect a relationship? \dots is p < 0.05 reliably.