# Load modules we'll need.
from scipy.io import loadmat
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import spectrogramCoherence Part 2 (Two noise signals, again)
Make two noise signals, with multiple trials
N = 1000;
K = 100;
dt= 0.001;
T = N*dt;
x = np.random.randn(K,N)
y = np.random.randn(K,N)
t = np.arange(0,N)*dt
plt.plot(t,x[0,:])
plt.plot(t,y[0,:])
plt.xlabel('Time [s]');Visualize the data across all trials
plt.imshow(x, # ... and show the image,
extent=[min(t), max(t), K, 1], # ... with meaningful axes,
aspect='auto') # ... and a nice aspect ratio
plt.xlabel('Time [s]')
plt.ylabel('Trial #');
plt.title('All trials from E1');Compute the cross-covariance, averaged across trials
cc_xy = "SOMETHING" # Compute cc for each trial,
cc_xy = np.mean(cc_xy,0) # ... average over trials,
lags = np.arange(-N + 1, N) # ... create a lag axis,
plt.plot(lags * dt, cc_xy) # ... and plot the result.
plt.xlabel('Lag [s]')
plt.ylabel('Trial averaged cross-covariance');
plt.ylim([-0.1, 1]);Compute the coherence
# Fourier transforms.
Xf = "SOMETHING" # Compute Fourier transform of x for each trial
Yf = "SOMETHING" # Compute Fourier transform of y for each trial
# Auto- and cross-spectra.
Sxx = "SOMETHING" # Spectrum of x trials
Syy = "SOMETHING" # ... and y trials
Sxy = "SOMETHING" # ... and the cross spectrum
# Trial average.
Sxx = np.mean(Sxx,0)
Syy = np.mean(Syy,0)
Sxy = np.mean(Sxy,0)
# Calculate coherence.
cohr = "SOMETHING"
f = np.fft.fftfreq(N, dt) # Define a frequency axis.
plt.plot(f, cohr.real) # Plot the coherence.
plt.ylim([0, 1.1]) # ... with y-axis scaled,
plt.xlabel('Frequency [Hz]') # ... and with axes labeled.
plt.ylabel('Coherence')
plt.title('Trial averaged coherence between two electrodes');